On vortex and dark solitons in the cubic-quintic nonlinear Schrodinger equation

被引:10
|
作者
Paredes, Angel [1 ]
Salgueiro, Jose R. [1 ]
Michinel, Humberto [1 ]
机构
[1] Univ Vigo, Sch Aeronaut & Space Engn, Appl Phys Dept, As Lagoas S-N, ES-32004 Orense, Spain
关键词
Nonlinear Schr?dinger equation; Cubic-quintic media; Vortices; Topological charge; Dark solitons; Stability; OPTICAL VORTICES; STABILITY; BEAMS; DROPLETS;
D O I
10.1016/j.physd.2022.133340
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study topologically charged propagation-invariant eigenstates of the 1+2-dimensional Schrodinger equation with a cubic (focusing)-quintic (defocusing) nonlinear term. First, we revisit the self-trapped vortex soliton solutions. Using a variational ansatz that allows us to describe the solutions as a liquid with a surface tension, we derive a simple formula relating the inner and outer radii of the bright vortex ring. Then, using numerical and variational techniques, we analyse dark soliton solutions for which the wave function density asymptotes to a non-vanishing value. We find an eigenvalue cutoff for the propagation constant that depends on the topological charge l. The variational profile provides simple and very accurate results for l >= 2. We also study the azimuthal stability of the eigenstates by a linear analysis finding that they are stable for all values of the propagation constant, at least for small l. (c) 2022 The Author(s). Published by Elsevier B.V.
引用
收藏
页数:9
相关论文
共 50 条
  • [1] Vortex solitons in fractional nonlinear Schrodinger equation with the cubic-quintic nonlinearity
    Li, Pengfei
    Malomed, Boris A.
    Mihalache, Dumitru
    [J]. CHAOS SOLITONS & FRACTALS, 2020, 137
  • [2] Solitons and Scattering for the Cubic-Quintic Nonlinear Schrodinger Equation on
    Killip, Rowan
    Oh, Tadahiro
    Pocovnicu, Oana
    Visan, Monica
    [J]. ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2017, 225 (01) : 469 - 548
  • [3] On the existence of dark solitons in a cubic-quintic nonlinear Schrodinger equation with a periodic potential
    Torres, Pedro J.
    Konotop, Vladimir V.
    [J]. COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2008, 282 (01) : 1 - 9
  • [4] Multistable solitons in the cubic-quintic discrete nonlinear Schrodinger equation
    Carretero-Gonzalez, R.
    Talley, J. D.
    Chong, C.
    Malomed, B. A.
    [J]. PHYSICA D-NONLINEAR PHENOMENA, 2006, 216 (01) : 77 - 89
  • [5] Bistability and instability of dark-antidark solitons in the cubic-quintic nonlinear Schrodinger equation
    Crosta, M.
    Fratalocchi, A.
    Trillo, S.
    [J]. PHYSICAL REVIEW A, 2011, 84 (06):
  • [6] Solitons for the cubic-quintic nonlinear Schrodinger equation with varying coefficients
    Chen Yuan-Ming
    Ma Song-Hua
    Ma Zheng-Yi
    [J]. CHINESE PHYSICS B, 2012, 21 (05)
  • [7] Optical Solitons for The Cubic-Quintic Nonlinear Schrodinger Equation<bold> </bold>
    Al-Ghafri, K. S.
    Krishnan, E. V.
    Biswas, Anjan
    [J]. ICNPAA 2018 WORLD CONGRESS: 12TH INTERNATIONAL CONFERENCE ON MATHEMATICAL PROBLEMS IN ENGINEERING, AEROSPACE AND SCIENCES, 2018, 2046
  • [8] Stability of spinning ring solitons of the cubic-quintic nonlinear Schrodinger equation
    Towers, I
    Buryak, AV
    Sammut, RA
    Malomed, BA
    Crasovan, LC
    Mihalache, D
    [J]. PHYSICS LETTERS A, 2001, 288 (5-6) : 292 - 298
  • [9] Interaction of Solitons With Delta Potential In The Cubic-Quintic Nonlinear Schrodinger Equation
    Aklan, Nor Amirah Busul
    Umarov, Bakhram
    [J]. 2015 INTERNATIONAL CONFERENCE ON RESEARCH AND EDUCATION IN MATHEMATICS (ICREM7), 2015, : 93 - 96
  • [10] Solitons for the cubic-quintic nonlinear Schrodinger equation with Raman effect in nonlinear optics
    Wang, Ping
    Shang, Tao
    Feng, Li
    Du, Yingjie
    [J]. OPTICAL AND QUANTUM ELECTRONICS, 2014, 46 (09) : 1117 - 1126