Vortex solitons in fractional nonlinear Schrodinger equation with the cubic-quintic nonlinearity

被引:81
|
作者
Li, Pengfei [1 ]
Malomed, Boris A. [2 ,3 ]
Mihalache, Dumitru [4 ]
机构
[1] Taiyuan Normal Univ, Dept Phys, Jinzhong 030619, Peoples R China
[2] Tel Aviv Univ, Sch Elect Engn, Dept Phys Elect, Fac Engn, IL-69978 Tel Aviv, Israel
[3] Tel Aviv Univ, Ctr Light Matter Interact, IL-69978 Tel Aviv, Israel
[4] Horia Hulubei Natl Inst Phys & Nucl Engn Magurele, RO-077125 Bucharest, Romania
基金
中国国家自然科学基金; 以色列科学基金会; 山西省青年科学基金;
关键词
3-DIMENSIONAL SPINNING SOLITONS; ENERGY AIRY BEAMS; GAP SOLITONS; RING SOLITONS; LIGHT-BEAMS; DYNAMICS; PROPAGATION; VORTICES; MEDIA; DIMENSIONS;
D O I
10.1016/j.chaos.2020.109783
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We address the existence and stability of vortex-soliton (VS) solutions of the fractional nonlinear Schrödinger equation (NLSE) with competing cubic-quintic nonlinearities and the Lévy index (fractionality) taking values 1 ≤ α ≤ 2. Families of ring-shaped VSs with vorticities s=1,2, and 3 are constructed in a numerical form. Unlike the usual two-dimensional NLSE (which corresponds to α=2), in the fractional model VSs exist above a finite threshold value of the total power, P. Stability of the VS solutions is investigated for small perturbations governed by the linearized equation, and corroborated by direct simulations. Unstable VSs are broken up by azimuthal perturbations into several fragments, whose number is determined by the fastest growing eigenmode of small perturbations. The stability region, defined in terms of P, expands with the increase of α from 1 up to 2 for all s=1, 2, and 3, except for steep shrinkage for s=2 in the interval of 1 ≤ α ≤ 1.3. © 2020 Elsevier Ltd
引用
收藏
页数:10
相关论文
共 50 条
  • [1] On vortex and dark solitons in the cubic-quintic nonlinear Schrodinger equation
    Paredes, Angel
    Salgueiro, Jose R.
    Michinel, Humberto
    [J]. PHYSICA D-NONLINEAR PHENOMENA, 2022, 437
  • [2] On the Existence of Bright Solitons in Cubic-Quintic Nonlinear Schrodinger Equation with Inhomogeneous Nonlinearity
    Belmonte-Beitia, Juan
    [J]. MATHEMATICAL PROBLEMS IN ENGINEERING, 2008, 2008
  • [3] Solitons and Scattering for the Cubic-Quintic Nonlinear Schrodinger Equation on
    Killip, Rowan
    Oh, Tadahiro
    Pocovnicu, Oana
    Visan, Monica
    [J]. ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2017, 225 (01) : 469 - 548
  • [4] Modulation instability in fractional Schrodinger equation with cubic-quintic nonlinearity
    Zhang, Jinggui
    [J]. JOURNAL OF NONLINEAR OPTICAL PHYSICS & MATERIALS, 2022, 31 (04)
  • [5] Multistable solitons in the cubic-quintic discrete nonlinear Schrodinger equation
    Carretero-Gonzalez, R.
    Talley, J. D.
    Chong, C.
    Malomed, B. A.
    [J]. PHYSICA D-NONLINEAR PHENOMENA, 2006, 216 (01) : 77 - 89
  • [6] Solitons for the cubic-quintic nonlinear Schrodinger equation with varying coefficients
    Chen Yuan-Ming
    Ma Song-Hua
    Ma Zheng-Yi
    [J]. CHINESE PHYSICS B, 2012, 21 (05)
  • [7] Bright solitons of the nonautonomous cubic-quintic nonlinear Schrodinger equation with sign-reversal nonlinearity
    Loomba, Shally
    Pal, Ritu
    Kumar, C. N.
    [J]. PHYSICAL REVIEW A, 2015, 92 (03):
  • [8] Optical Solitons for The Cubic-Quintic Nonlinear Schrodinger Equation<bold> </bold>
    Al-Ghafri, K. S.
    Krishnan, E. V.
    Biswas, Anjan
    [J]. ICNPAA 2018 WORLD CONGRESS: 12TH INTERNATIONAL CONFERENCE ON MATHEMATICAL PROBLEMS IN ENGINEERING, AEROSPACE AND SCIENCES, 2018, 2046
  • [9] Stability of spinning ring solitons of the cubic-quintic nonlinear Schrodinger equation
    Towers, I
    Buryak, AV
    Sammut, RA
    Malomed, BA
    Crasovan, LC
    Mihalache, D
    [J]. PHYSICS LETTERS A, 2001, 288 (5-6) : 292 - 298
  • [10] Interaction of Solitons With Delta Potential In The Cubic-Quintic Nonlinear Schrodinger Equation
    Aklan, Nor Amirah Busul
    Umarov, Bakhram
    [J]. 2015 INTERNATIONAL CONFERENCE ON RESEARCH AND EDUCATION IN MATHEMATICS (ICREM7), 2015, : 93 - 96