Continuum limit of 2D fractional nonlinear Schrodinger equation

被引:1
|
作者
Choi, Brian [1 ]
Aceves, Alejandro [1 ]
机构
[1] Southern Methodist Univ, Dept Math, Dallas, TX 75275 USA
基金
美国国家科学基金会;
关键词
Continuum limit; Fractional equation; Lattice system; NLS; DISPERSIVE PROPERTIES; CONVERGENCE; SCHEMES;
D O I
10.1007/s00028-023-00881-3
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We prove that the solutions to the discrete nonlinear Schrodinger equation with non-local algebraically decaying coupling converge strongly in L-2(R-2) to those of the continuum fractional nonlinear Schrodinger equation, as the discretization parameter tends to zero. The proof relies on sharp dispersive estimates that yield the Strichartz estimates that are uniform in the discretization parameter. An explicit computation of the leading term of the oscillatory integral asymptotics is used to show that the best constants of a family of dispersive estimates blow up as the non-locality parameter a ? (1, 2) approaches the boundaries.
引用
收藏
页数:35
相关论文
共 50 条
  • [1] Continuum limit of 2D fractional nonlinear Schrödinger equation
    Brian Choi
    Alejandro Aceves
    Journal of Evolution Equations, 2023, 23
  • [2] THE WEAKLY NONLINEAR LARGE-BOX LIMIT OF THE 2D CUBIC NONLINEAR SCHRODINGER EQUATION
    Faou, Erwan
    Germain, Pierre
    Hani, Zaher
    JOURNAL OF THE AMERICAN MATHEMATICAL SOCIETY, 2016, 29 (04) : 915 - 982
  • [3] A WAVELET METHOD FOR NONLINEAR VARIABLE-ORDER TIME FRACTIONAL 2D SCHRODINGER EQUATION
    Hosseininia, Masoumeh
    Heydari, Mohammad Hossein
    Cattani, Carlo
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES S, 2021, 14 (07): : 2273 - 2295
  • [4] On the scattering problem for the nonlinear Schrodinger equation with a potential in 2D
    Georgiev, Vladimir
    Li, Chunhua
    PHYSICA D-NONLINEAR PHENOMENA, 2019, 398 : 208 - 218
  • [5] 2D solutions of the hyperbolic discrete nonlinear Schrodinger equation
    D'Ambroise, J.
    Kevrekidis, P. G.
    PHYSICA SCRIPTA, 2019, 94 (11)
  • [6] Direct and inverse scattering for nonlinear Schrodinger equation in 2D
    Serov, Valery
    Harju, Markus
    Fotopoulos, Georgios
    JOURNAL OF MATHEMATICAL PHYSICS, 2012, 53 (12)
  • [7] VORTEX SOLITONS FOR 2D FOCUSING NONLINEAR SCHRODINGER EQUATION
    Mizumachi, Tetsu
    DIFFERENTIAL AND INTEGRAL EQUATIONS, 2005, 18 (04) : 431 - 450
  • [8] Interaction with an obstacle in the 2D focusing nonlinear Schrodinger equation
    Landoulsi, Oussama
    Roudenko, Svetlana
    Yang, Kai
    ADVANCES IN COMPUTATIONAL MATHEMATICS, 2023, 49 (05)
  • [9] Fractional nonlinear Schrodinger equation
    Mendez-Navarro, Jesus A.
    Naumkin, Pavel I.
    Sanchez-Suarez, Isahi
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2019, 70 (06):
  • [10] On the continuum limit for the discrete nonlinear Schrodinger equation on a large finite cubic lattice
    Hong, Younghun
    Kwak, Chulkwang
    Yang, Changhun
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2023, 227