Vortex and cluster solitons in nonlocal nonlinear fractional Schrodinger equation

被引:45
|
作者
Wang, Qing [1 ,2 ,3 ]
Liang, Guo [3 ]
机构
[1] Shangrao Normal Univ, Quantum Informat Res Ctr, Shangrao 334001, Peoples R China
[2] Shenzhen Univ, Coll Optoelect Engn, Shenzhen 518060, Peoples R China
[3] Shangqiu Normal Univ, Sch Elect & Elect Engn, Shangqiu 476000, Peoples R China
基金
中国国家自然科学基金;
关键词
nonlinear optics; fractional diffraction effect; vortex soliton; cluster soliton; GAUSSIAN SOLITONS; OPTICAL SOLITONS; DYNAMICS; BEAMS;
D O I
10.1088/2040-8986/ab806e
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
We discover a series of ring and cluster solitons in the (1+2)-dimensional nonlocal nonlinear fractional Schrodinger equation by iteration algorithm, and verify their robustness by introducing random perturbations during propagations. We obtain the relations between the soliton power, the orbital angular momentum, and the rotation period of phase, which are dependent on the Levy index alpha. When the radial number p = 0, the soliton shapes slightly vary with the change of Levy index. However, when p >= 1, the solitons exhibit novel structures, the outer ring (hump) of such solitons decrease as the Levy index decreases. Our results extend the study of vortex and cluster solitons into fractional systems and deepen the understanding of fractional dimensions.
引用
收藏
页数:7
相关论文
共 50 条
  • [1] Transformation of multipole and vortex solitons in the nonlocal nonlinear fractional Schrodinger equation by means of Levy-index management
    Wang, Qing
    Zhang, Lingling
    Malomed, Boris A.
    Mihalache, Dumitru
    Zeng, Liangwei
    [J]. CHAOS SOLITONS & FRACTALS, 2022, 157
  • [2] Vortex solitons in fractional nonlinear Schrodinger equation with the cubic-quintic nonlinearity
    Li, Pengfei
    Malomed, Boris A.
    Mihalache, Dumitru
    [J]. CHAOS SOLITONS & FRACTALS, 2020, 137
  • [3] Optical solitons with time fractional nonlinear Schrodinger equation and competing weakly nonlocal nonlinearity
    Islam, Warda
    Younis, Muhammad
    Rizvi, Syed Tahir Raza
    [J]. OPTIK, 2017, 130 : 562 - 567
  • [4] Elliptic Solitons in (1+2)-Dimensional Anisotropic Nonlocal Nonlinear Fractional Schrodinger Equation
    Wang, Qing
    Deng, ZhenZhou
    [J]. IEEE PHOTONICS JOURNAL, 2019, 11 (04):
  • [5] Dissipative surface solitons in a nonlinear fractional Schrodinger equation
    Huang, Changming
    Dong, Liangwei
    [J]. OPTICS LETTERS, 2019, 44 (22) : 5438 - 5441
  • [6] Surface gap solitons in a nonlinear fractional Schrodinger equation
    Xiao, Jing
    Tian, Zhaoxia
    Huang, Changming
    Dong, Liangwei
    [J]. OPTICS EXPRESS, 2018, 26 (03): : 2650 - 2658
  • [7] Dynamics of nonlocal and localized spatiotemporal solitons for a partially nonlocal nonlinear Schrodinger equation
    Wang, Yue-Yue
    Dai, Chao-Qing
    Xu, Yi-Qing
    Zheng, Jun
    Fan, Yan
    [J]. NONLINEAR DYNAMICS, 2018, 92 (03) : 1261 - 1269
  • [8] Numerical variational approach for vortex solitons in nonlinear Schrodinger equation
    Arce, Ismael
    Gomez-Escoto, Rafael
    Lopez-Aguayo, Servando
    [J]. 2019 IEEE 39TH CENTRAL AMERICA AND PANAMA CONVENTION (CONCAPAN XXXIX), 2019, : 19 - 23
  • [9] Vortex Spatial Solitons to a Nonlinear Schrodinger Equation with Varying Coefficients
    徐四六
    梁检初
    李忠明
    [J]. Communications in Theoretical Physics, 2011, 56 (12) : 1105 - 1110
  • [10] Vortex Spatial Solitons to a Nonlinear Schrodinger Equation with Varying Coefficients
    Xu Si-Liu
    Liang Jian-Chu
    Li Zhong-Ming
    [J]. COMMUNICATIONS IN THEORETICAL PHYSICS, 2011, 56 (06) : 1105 - 1110