Numerical variational approach for vortex solitons in nonlinear Schrodinger equation

被引:0
|
作者
Arce, Ismael [1 ]
Gomez-Escoto, Rafael [1 ]
Lopez-Aguayo, Servando [2 ]
机构
[1] Univ El Salvador, Escuela Fis, San Salvador, El Salvador
[2] Tecnol Monterrey, Escuela Ingn & Ciencias, Monterrey, Mexico
关键词
Soliton; vortex; nonlocal; variational method; Rayleigh-Ritz; PROPAGATION;
D O I
暂无
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
We study the generation and dynamics of asymmetric vortex solitons in nonlocal media described with an additional parameter that models the degree of azimuthal asymmetry. The main properties of vortex solitons are investigated analytically and numerically, in the numerical case we use a recently introduced numerical variational method based on the Rayleigh-Ritz optimization principle, we find that nonlocality and the degree of asymmetry can stabilize the proposed vortex solitons. We corroborate the results reported by using spectral techniques.
引用
收藏
页码:19 / 23
页数:5
相关论文
共 50 条
  • [21] Stability of Algebraic Solitons for Nonlinear Schrodinger Equations of Derivative Type: Variational Approach
    Hayashi, Masayuki
    [J]. ANNALES HENRI POINCARE, 2022, 23 (12): : 4249 - 4277
  • [22] Fast Petviashvili-Hankel method for vortex solitons in the generalized nonlinear Schrodinger equation
    Ramesh, Rohan
    Lopez-Aguayo, Servando
    [J]. JOURNAL OF OPTICS, 2020, 22 (02)
  • [23] Numerical methods and comparison for computing dark and bright solitons in the nonlinear Schrodinger equation
    Bao, Weizhu
    Tang, Qinglin
    Xu, Zhiguo
    [J]. JOURNAL OF COMPUTATIONAL PHYSICS, 2013, 235 : 423 - 445
  • [24] Vortex dynamics in the nonlinear Schrodinger equation
    Quist, MJ
    [J]. PHYSICAL REVIEW B, 1999, 60 (06): : 4240 - 4244
  • [25] Bipolar solitons of the focusing nonlinear Schrodinger equation
    Liu, Zhongxuan
    Feng, Qi
    Lin, Chengyou
    Chen, Zhaoyang
    Ding, Yingchun
    [J]. PHYSICA B-CONDENSED MATTER, 2016, 501 : 117 - 122
  • [26] Moving solitons in the discrete nonlinear Schrodinger equation
    Oxtoby, O. F.
    Barashenkov, I. V.
    [J]. PHYSICAL REVIEW E, 2007, 76 (03):
  • [27] Formation of solitons for the modified nonlinear Schrodinger equation
    Akram, Ghazala
    Sadaf, Maasoomah
    Arshed, Saima
    Raza, Muhammad Zubair
    Alzaidi, Ahmed S. M.
    [J]. MODERN PHYSICS LETTERS B, 2024, 38 (22):
  • [28] ON ASYMPTOTIC STABILITY OF SOLITONS IN A NONLINEAR SCHRODINGER EQUATION
    Komech, Alexander
    Kopylova, Elena
    Stuart, David
    [J]. COMMUNICATIONS ON PURE AND APPLIED ANALYSIS, 2012, 11 (03) : 1063 - 1079
  • [29] Chirped solitons in derivative nonlinear Schrodinger equation
    Justin, Mibaile
    Hubert, Malwe Boudoue
    Betchewe, Gambo
    Doka, Serge Yamigno
    Crepin, Kofane Timoleon
    [J]. CHAOS SOLITONS & FRACTALS, 2018, 107 : 49 - 54
  • [30] Direct perturbation theory for solitons of the derivative nonlinear Schrodinger equation and the modified nonlinear Schrodinger equation
    Chen, XJ
    Yang, JK
    [J]. PHYSICAL REVIEW E, 2002, 65 (06):