Numerical variational approach for vortex solitons in nonlinear Schrodinger equation

被引:0
|
作者
Arce, Ismael [1 ]
Gomez-Escoto, Rafael [1 ]
Lopez-Aguayo, Servando [2 ]
机构
[1] Univ El Salvador, Escuela Fis, San Salvador, El Salvador
[2] Tecnol Monterrey, Escuela Ingn & Ciencias, Monterrey, Mexico
关键词
Soliton; vortex; nonlocal; variational method; Rayleigh-Ritz; PROPAGATION;
D O I
暂无
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
We study the generation and dynamics of asymmetric vortex solitons in nonlocal media described with an additional parameter that models the degree of azimuthal asymmetry. The main properties of vortex solitons are investigated analytically and numerically, in the numerical case we use a recently introduced numerical variational method based on the Rayleigh-Ritz optimization principle, we find that nonlocality and the degree of asymmetry can stabilize the proposed vortex solitons. We corroborate the results reported by using spectral techniques.
引用
收藏
页码:19 / 23
页数:5
相关论文
共 50 条
  • [41] Nonlinear Schrodinger-Helmholtz equation as numerical regularization of the nonlinear Schrodinger equation
    Cao, Yanping
    Musslimani, Ziad H.
    Titi, Edriss S.
    [J]. NONLINEARITY, 2008, 21 (05) : 879 - 898
  • [42] VARIATIONAL APPROXIMATIONS TO THE NONLINEAR SCHRODINGER-EQUATION
    COOPER, F
    SHEPARD, HK
    SIMMONS, LM
    [J]. PHYSICS LETTERS A, 1991, 156 (7-8) : 436 - 440
  • [43] A multisymplectic variational integrator for the nonlinear Schrodinger equation
    Chen, JB
    Qin, MZ
    [J]. NUMERICAL METHODS FOR PARTIAL DIFFERENTIAL EQUATIONS, 2002, 18 (04) : 523 - 536
  • [44] A variational analysis of a gauged nonlinear Schrodinger equation
    Pomponio, Alessio
    Ruiz, David
    [J]. JOURNAL OF THE EUROPEAN MATHEMATICAL SOCIETY, 2015, 17 (06) : 1463 - 1486
  • [45] Variational solutions for the discrete nonlinear Schrodinger equation
    Kaup, DJ
    [J]. MATHEMATICS AND COMPUTERS IN SIMULATION, 2005, 69 (3-4) : 322 - 333
  • [46] Radiation and vortex dynamics in the nonlinear Schrodinger equation
    Krstulovic, Giorgio
    Brachet, Marc
    Tirapegui, Enrique
    [J]. PHYSICAL REVIEW E, 2008, 78 (02):
  • [47] Vortex pairs in the discrete nonlinear Schrodinger equation
    Bramburger, J. J.
    Cuevas-Maraver, J.
    Kevrekidis, P. G.
    [J]. NONLINEARITY, 2020, 33 (05) : 2159 - 2180
  • [48] Scattering of solitons and dark solitons by potential walls in the nonlinear Schrodinger equation
    Sakaguchi, H
    Tamura, M
    [J]. JOURNAL OF THE PHYSICAL SOCIETY OF JAPAN, 2005, 74 (01) : 292 - 298
  • [49] Variational approach to soliton generation and stability analysis of multidimensional nonlinear Schrodinger equation
    Skarka, V
    Aleksic, NB
    Berezhiani, V
    [J]. SPT 2004: SYMMETRY AND PERTURBATION THEORY, 2005, : 300 - 307
  • [50] Variational approach to studying solitary waves in the nonlinear Schrodinger equation with complex potentials
    Mertens, Franz G.
    Cooper, Fred
    Arevalo, Edward
    Khare, Avinash
    Saxena, Avadh
    Bishop, A. R.
    [J]. PHYSICAL REVIEW E, 2016, 94 (03)