A variational approach to the nonlinear Schrodinger equation

被引:4
|
作者
Anderson, D
Lisak, M
机构
来源
PHYSICA SCRIPTA | 1996年 / T63卷
关键词
D O I
10.1088/0031-8949/1996/T63/010
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
A variational approach for finding approximate solutions of the NLS equation is presented. The approach is based on trial functions involving parameter functions which depend on the evolution coordinate. The parameter functions are determined using direct variational methods and Ritz optimization. Two illustrative examples are given. The first considers one-dimensional pulse propagation in dispersive and nonlinear optical fibres. The second concerns two-dimensional laser beam propagation in a medium with a refractive index radially inhomogeneous in the direction perpendicular to the direction of propagation. The usefulness and accuracy of the variational results are demonstrated by comparisons with numerical results and with result of the conventional paraxial ray approximation for nonlinear laser beam propagation.
引用
收藏
页码:69 / 74
页数:6
相关论文
共 50 条
  • [1] Variational approach for breathers in a nonlinear fractional Schrodinger equation
    Chen, Manna
    Guo, Qi
    Lu, Daquan
    Hu, Wei
    [J]. COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2019, 71 : 73 - 81
  • [2] Numerical variational approach for vortex solitons in nonlinear Schrodinger equation
    Arce, Ismael
    Gomez-Escoto, Rafael
    Lopez-Aguayo, Servando
    [J]. 2019 IEEE 39TH CENTRAL AMERICA AND PANAMA CONVENTION (CONCAPAN XXXIX), 2019, : 19 - 23
  • [3] On the variational approach to the stability of standing waves for the nonlinear Schrodinger equation
    Hajaiej, H
    Stuart, CA
    [J]. ADVANCED NONLINEAR STUDIES, 2004, 4 (04) : 469 - 501
  • [4] A variational approach in the dissipative cubic-quintic nonlinear Schrodinger equation
    Freitas, DS
    De Oliveira, JR
    [J]. MODERN PHYSICS LETTERS B, 2002, 16 (1-2): : 27 - 32
  • [5] VARIATIONAL APPROXIMATIONS TO THE NONLINEAR SCHRODINGER-EQUATION
    COOPER, F
    SHEPARD, HK
    SIMMONS, LM
    [J]. PHYSICS LETTERS A, 1991, 156 (7-8) : 436 - 440
  • [6] A multisymplectic variational integrator for the nonlinear Schrodinger equation
    Chen, JB
    Qin, MZ
    [J]. NUMERICAL METHODS FOR PARTIAL DIFFERENTIAL EQUATIONS, 2002, 18 (04) : 523 - 536
  • [7] A variational analysis of a gauged nonlinear Schrodinger equation
    Pomponio, Alessio
    Ruiz, David
    [J]. JOURNAL OF THE EUROPEAN MATHEMATICAL SOCIETY, 2015, 17 (06) : 1463 - 1486
  • [8] Variational solutions for the discrete nonlinear Schrodinger equation
    Kaup, DJ
    [J]. MATHEMATICS AND COMPUTERS IN SIMULATION, 2005, 69 (3-4) : 322 - 333
  • [9] Variational approach to soliton generation and stability analysis of multidimensional nonlinear Schrodinger equation
    Skarka, V
    Aleksic, NB
    Berezhiani, V
    [J]. SPT 2004: SYMMETRY AND PERTURBATION THEORY, 2005, : 300 - 307
  • [10] Variational approach to studying solitary waves in the nonlinear Schrodinger equation with complex potentials
    Mertens, Franz G.
    Cooper, Fred
    Arevalo, Edward
    Khare, Avinash
    Saxena, Avadh
    Bishop, A. R.
    [J]. PHYSICAL REVIEW E, 2016, 94 (03)