Optical solitons and Peregrine solitons for nonlinear Schrodinger equation by variational iteration method

被引:36
|
作者
Wazwaz, Abdul-Majid [1 ]
Kaur, Lakhveer [2 ]
机构
[1] St Xavier Univ, Dept Math, Chicago, IL 60655 USA
[2] Jaypee Inst Informat Technol, Dept Math, Noida, UP, India
来源
OPTIK | 2019年 / 179卷
关键词
Nonlinear Schrodinger equation; Akhmediev breathers; Peregrine soliton; (G '/G(2))-Expansion method; Solitons; CONSERVATION-LAWS; POWER-LAW; PERTURBATION; FIBERS; WAVES; KERR;
D O I
10.1016/j.ijleo.2018.11.004
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
The current study is dedicated for operating the variational iteration method (VIM) to the self focusing nonlinear Schrodinger (NLS) equation. Consequently, optical solitons and singular soliton solutions are formally derived. The VIM, representing the resultant solution in a series structure, does not require linearization of the equation and accelerates the convergence of resultant solution. The presented analysis shows the pertinent features of this method. Furthermore, the powerful (G'/G(2))-expansion method has been adopted for the aforementioned equation for culminating hyperbolic, trigonometric and rational function solutions with rich mathematical structures, leading to diverse types of solitons.
引用
收藏
页码:804 / 809
页数:6
相关论文
共 50 条
  • [1] A variety of optical solitons for nonlinear Schrodinger equation with detuning term by the variational iteration method
    Wazwaz, Abdul-Majid
    [J]. OPTIK, 2019, 196
  • [2] Numerical variational approach for vortex solitons in nonlinear Schrodinger equation
    Arce, Ismael
    Gomez-Escoto, Rafael
    Lopez-Aguayo, Servando
    [J]. 2019 IEEE 39TH CENTRAL AMERICA AND PANAMA CONVENTION (CONCAPAN XXXIX), 2019, : 19 - 23
  • [3] Variational approximations for traveling solitons in a discrete nonlinear Schrodinger equation
    Syafwan, M.
    Susanto, H.
    Cox, S. M.
    Malomed, B. A.
    [J]. JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2012, 45 (07)
  • [4] A COUPLED NONLINEAR SCHRODINGER-EQUATION AND OPTICAL SOLITONS
    WADATI, M
    IIZUKA, T
    HISAKADO, M
    [J]. JOURNAL OF THE PHYSICAL SOCIETY OF JAPAN, 1992, 61 (07) : 2241 - 2245
  • [5] Optical solitons to the resonance nonlinear Schrodinger equation by Sine-Gordon equation method
    Inc, Mustafa
    Aliyu, Aliyu Isa
    Yusuf, Abdullahi
    Baleanu, Dumitru
    [J]. SUPERLATTICES AND MICROSTRUCTURES, 2018, 113 : 541 - 549
  • [6] Peregrine Solitons on a Periodic Background in the Vector Cubic-Quintic Nonlinear Schrodinger Equation
    Ye, Yanlin
    Bu, Lili
    Wang, Wanwan
    Chen, Shihua
    Baronio, Fabio
    Mihalache, Dumitru
    [J]. FRONTIERS IN PHYSICS, 2020, 8
  • [7] Gaussian solitons in nonlinear Schrodinger equation
    Nassar, AB
    Bassalo, JMF
    Alencar, PTS
    de Souza, JF
    de Oliveira, JE
    Cattani, M
    [J]. NUOVO CIMENTO DELLA SOCIETA ITALIANA DI FISICA B-BASIC TOPICS IN PHYSICS, 2002, 117 (08): : 941 - 946
  • [8] Bragg solitons and the nonlinear Schrodinger equation
    de Sterke, CM
    Eggleton, BJ
    [J]. PHYSICAL REVIEW E, 1999, 59 (01) : 1267 - 1269
  • [9] Solitons of the generalized nonlinear Schrodinger equation
    Tsoy, Eduard N.
    Suyunov, Laziz A.
    [J]. PHYSICA D-NONLINEAR PHENOMENA, 2020, 414
  • [10] Colliding Solitons for the Nonlinear Schrodinger Equation
    Abou Salem, W. K.
    Froehlich, J.
    Sigal, I. M.
    [J]. COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2009, 291 (01) : 151 - 176