Mobile Robot 6D Pose Estimation Using a Wireless Localization Network

被引:0
|
作者
Dobrev, Yassen [1 ]
Reustle, Christoph [1 ]
Pavlenko, Tatiana [1 ]
Cordes, Florian [2 ]
Vossiek, Martin [1 ]
机构
[1] Friedrich Alexander Univ Erlangen NurnbergFAU, Inst Microwaves & Photon LHFT, Erlangen, Germany
[2] DFKI GmbH, Robot Innovat Ctr, Bremen, Germany
关键词
wireless localization; 6D pose estimation; secondary radar; sensor fusion;
D O I
暂无
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Global navigation satellite systems (GNSS) are widely used for localization on Earth, but are not available on other planets, so that robotic planetary exploration missions need to use alternative methods for localization. This paper presents a wireless localization network (WLN) for estimating the 3D position and 3D orientation of a mobile robot. It consists of at least one reference 24 GHz radar node with known pose, and a mobile node on the robot. The reference nodes can determine the distance and both spatial angles to the mobile robot (thus locating it in 3D) using round-trip time of flight measurements and digital beamforming. We use an extended Kalman filter (EKF) to fuse these results with the readings from the mobile node, and an inclinometer to determine the complete 6D pose of the mobile robot. Measurements in a realistic scenario prove the feasibility of the proposed concept.
引用
收藏
页数:4
相关论文
共 50 条
  • [31] BOP: Benchmark for 6D Object Pose Estimation
    Hodan, Tomas
    Michel, Frank
    Brachmann, Eric
    Kehl, Wadim
    Buch, Anders Glent
    Kraft, Dirk
    Drost, Bertram
    Vidal, Joel
    Ihrke, Stephan
    Zabulis, Xenophon
    Sahin, Caner
    Manhardt, Fabian
    Tombari, Federico
    Kim, Tae-Kyun
    Matas, Jiri
    Rother, Carsten
    COMPUTER VISION - ECCV 2018, PT X, 2018, 11214 : 19 - 35
  • [32] Fast 6D Pose Estimation from a Monocular Image Using Hierarchical Pose Trees
    Konishi, Yoshinori
    Hanzawa, Yuki
    Kawade, Masato
    Hashimoto, Manabu
    COMPUTER VISION - ECCV 2016, PT I, 2016, 9905 : 398 - 413
  • [33] Survey on 6D Pose Estimation of Rigid Object
    Chen, Jiale
    Zhang, Lijun
    Liu, Yi
    Xu, Chi
    PROCEEDINGS OF THE 39TH CHINESE CONTROL CONFERENCE, 2020, : 7440 - 7445
  • [34] Orientation Keypoints for 6D Human Pose Estimation
    Fisch, Martin
    Clark, Ronald
    IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2022, 44 (12) : 10145 - 10158
  • [35] 3D Point-to-Keypoint Voting Network for 6D Pose Estimation
    Hua, Weitong
    Guo, Jiaxin
    Wang, Yue
    Xiong, Rong
    16TH IEEE INTERNATIONAL CONFERENCE ON CONTROL, AUTOMATION, ROBOTICS AND VISION (ICARCV 2020), 2020, : 536 - 541
  • [36] A RGB-D feature fusion network for occluded object 6D pose estimation
    Song, Yiwei
    Tang, Chunhui
    SIGNAL IMAGE AND VIDEO PROCESSING, 2024, 18 (8-9) : 6309 - 6319
  • [37] Estimation of 6D Object Pose Using a 2D Bounding Box
    Hong, Yong
    Liu, Jin
    Jahangir, Zahid
    He, Sheng
    Zhang, Qing
    SENSORS, 2021, 21 (09)
  • [38] DualPoseNet: Category-level 6D Object Pose and Size Estimation Using Dual Pose Network with Refined Learning of Pose Consistency
    Lin, Jiehong
    Wei, Zewei
    Li, Zhihao
    Xu, Songcen
    Jia, Kui
    Li, Yuanqing
    2021 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV 2021), 2021, : 3540 - 3549
  • [39] Binocular vision object 6D pose estimation based on circulatory neural network
    Yang H.
    Li Z.
    Kang Z.-Y.
    Tian B.
    Dong Q.
    Zhejiang Daxue Xuebao (Gongxue Ban)/Journal of Zhejiang University (Engineering Science), 2023, 57 (11): : 2179 - 2187
  • [40] DCL-Net: Deep Correspondence Learning Network for 6D Pose Estimation
    Li, Hongyang
    Lin, Jiehong
    Jia, Kui
    COMPUTER VISION, ECCV 2022, PT IX, 2022, 13669 : 369 - 385