A RGB-D feature fusion network for occluded object 6D pose estimation

被引:0
|
作者
Song, Yiwei [1 ]
Tang, Chunhui [1 ]
机构
[1] Univ Shanghai Sci & Technol, 516 Jungong Rd, Shanghai 200093, Peoples R China
关键词
6D Pose estimation; Implicit fusion; Local region feature; Transformer;
D O I
10.1007/s11760-024-03318-7
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
6D pose estimation using RGB-D data has been widely utilized in various scenarios, with keypoint-based methods receiving significant attention due to their exceptional performance. However, these methods still face numerous challenges, especially when the object is heavily occluded or truncated. To address this issue, we propose a novel cross-modal fusion network. Specifically, our approach initially employs object detection to identify the potential position of the object and randomly samples within this region. Subsequently, a specially designed feature extraction network is utilized to extract appearance features from the RGB image and geometry features from the depth image respectively; these features are then implicitly aggregated through cross-modal fusion. Finally, keypoints are employed for estimating the pose of the object. The proposed method undergoes extensive testing on Occlusion Linemod and Truncation Linemod datasets. Experimental results demonstrate that our method has made significant advancements, thereby validating the effectiveness of cross-modal feature fusion strategy in enhancing the accuracy of RGB-D image pose estimation based on keypoints.
引用
收藏
页码:6309 / 6319
页数:11
相关论文
共 50 条
  • [1] EFN6D: an efficient RGB-D fusion network for 6D pose estimation
    Wang Y.
    Jiang X.
    Fujita H.
    Fang Z.
    Qiu X.
    Chen J.
    [J]. Journal of Ambient Intelligence and Humanized Computing, 2024, 15 (01) : 75 - 88
  • [2] Robust 6D Object Pose Estimation by Learning RGB-D Features
    Tian, Meng
    Pan, Liang
    Ang, Marcelo H., Jr.
    Lee, Gim Hee
    [J]. 2020 IEEE INTERNATIONAL CONFERENCE ON ROBOTICS AND AUTOMATION (ICRA), 2020, : 6218 - 6224
  • [3] Attention-guided RGB-D Fusion Network for Category-level 6D Object Pose Estimation
    Wang, Hao
    Li, Weiming
    Kim, Jiyeon
    Wang, Qiang
    [J]. 2022 IEEE/RSJ INTERNATIONAL CONFERENCE ON INTELLIGENT ROBOTS AND SYSTEMS (IROS), 2022, : 10651 - 10658
  • [4] Texture-less object detection and 6D pose estimation in RGB-D images
    Zhang, Haoruo
    Cao, Qixin
    [J]. ROBOTICS AND AUTONOMOUS SYSTEMS, 2017, 95 : 64 - 79
  • [5] Holistic and local patch framework for 6D object pose estimation in RGB-D images
    Zhang, Haoruo
    Cao, Qixin
    [J]. COMPUTER VISION AND IMAGE UNDERSTANDING, 2019, 180 : 59 - 73
  • [6] 6D Gripper Pose Estimation from RGB-D Image
    Tang, Qirong
    Hu, Xue
    Chu, Zhugang
    Wu, Shun
    [J]. COMPUTER VISION SYSTEMS (ICVS 2019), 2019, 11754 : 120 - 125
  • [7] Visual Attention and Color Cues for 6D Pose Estimation on Occluded Scenarios Using RGB-D Data
    Vidal, Joel
    Lin, Chyi-Yeu
    Marti, Robert
    [J]. SENSORS, 2021, 21 (23)
  • [8] Dense Color Constraints based 6D object pose estimation from RGB-D images
    Wang, Zilun
    Liu, Yi
    Xu, Chi
    [J]. 2022 41ST CHINESE CONTROL CONFERENCE (CCC), 2022, : 6416 - 6420
  • [9] A Lightweight Two-End Feature Fusion Network for Object 6D Pose Estimation
    Zuo, Ligang
    Xie, Lun
    Pan, Hang
    Wang, Zhiliang
    [J]. MACHINES, 2022, 10 (04)
  • [10] SilhoNet: An RGB Method for 6D Object Pose Estimation
    Billings, Gideon
    Johnson-Roberson, Matthew
    [J]. IEEE ROBOTICS AND AUTOMATION LETTERS, 2019, 4 (04): : 3727 - 3734