Dense Color Constraints based 6D object pose estimation from RGB-D images

被引:0
|
作者
Wang, Zilun [1 ,2 ]
Liu, Yi [3 ,4 ]
Xu, Chi [1 ,2 ]
机构
[1] China Univ Geosci, Sch Automat, Wuhan 430074, Peoples R China
[2] Hubei Key Lab Adv Control & Intelligent Automat C, Wuhan 430074, Peoples R China
[3] CRRC Zhuzhou Locomot Co Ltd, Zhuzhou, Peoples R China
[4] Natl Innovat Ctr Adv Rail Transit Equipment, Zhuzhou, Hunan, Peoples R China
基金
中国国家自然科学基金;
关键词
Computer Vision; Deep Learning; Pose Estimation;
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
A key problem for 6D pose estimation based on RGB-D image input is how to make full use of these two different data sources. The previous work simply took the depth map as the input of the fourth channel of CNN, or carried out the fusion offeatures extracted from these two data sources with different methods. But their fusion did not impose the right constraints and lost some valuable information. In this work, we propose that DCC (Dense Color Constraints). 6D pose estimation performance can be improved effectively by using dense corresponding color constraints. Experiments show the most advanced end-to-end performance in LineMod datasets.
引用
收藏
页码:6416 / 6420
页数:5
相关论文
共 50 条
  • [1] Texture-less object detection and 6D pose estimation in RGB-D images
    Zhang, Haoruo
    Cao, Qixin
    [J]. ROBOTICS AND AUTONOMOUS SYSTEMS, 2017, 95 : 64 - 79
  • [2] Holistic and local patch framework for 6D object pose estimation in RGB-D images
    Zhang, Haoruo
    Cao, Qixin
    [J]. COMPUTER VISION AND IMAGE UNDERSTANDING, 2019, 180 : 59 - 73
  • [3] Robust 6D Object Pose Estimation by Learning RGB-D Features
    Tian, Meng
    Pan, Liang
    Ang, Marcelo H., Jr.
    Lee, Gim Hee
    [J]. 2020 IEEE INTERNATIONAL CONFERENCE ON ROBOTICS AND AUTOMATION (ICRA), 2020, : 6218 - 6224
  • [4] 6D Gripper Pose Estimation from RGB-D Image
    Tang, Qirong
    Hu, Xue
    Chu, Zhugang
    Wu, Shun
    [J]. COMPUTER VISION SYSTEMS (ICVS 2019), 2019, 11754 : 120 - 125
  • [5] Geometric-aware dense matching network for 6D pose estimation of objects from RGB-D images
    Wu, Chenrui
    Chen, Long
    Wang, Shenglong
    Yang, Han
    Jiang, Junjie
    [J]. PATTERN RECOGNITION, 2023, 137
  • [6] 6D Object Pose Estimation in Cluttered Scenes from RGB Images
    Xiao-Long Yang
    Xiao-Hong Jia
    Yuan Liang
    Lu-Bin Fan
    [J]. Journal of Computer Science and Technology, 2022, 37 : 719 - 730
  • [7] 6D Object Pose Estimation in Cluttered Scenes from RGB Images
    Yang, Xiao-Long
    Jia, Xiao-Hong
    Liang, Yuan
    Fan, Lu-Bin
    [J]. JOURNAL OF COMPUTER SCIENCE AND TECHNOLOGY, 2022, 37 (03) : 719 - 730
  • [8] A RGB-D feature fusion network for occluded object 6D pose estimation
    Song, Yiwei
    Tang, Chunhui
    [J]. SIGNAL IMAGE AND VIDEO PROCESSING, 2024, 18 (8-9) : 6309 - 6319
  • [9] Learning Analysis-by-Synthesis for 6D Pose Estimation in RGB-D Images
    Krull, Alexander
    Brachmann, Eric
    Michel, Frank
    Yang, Michael Ying
    Gumhold, Stefan
    Rother, Carsten
    [J]. 2015 IEEE INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV), 2015, : 954 - 962
  • [10] Object Learning for 6D Pose Estimation and Grasping from RGB-D Videos of In-hand Manipulation
    Patten, Timothy
    Park, Kiru
    Leitner, Markus
    Wolfram, Kevin
    Vincze, Markus
    [J]. 2021 IEEE/RSJ INTERNATIONAL CONFERENCE ON INTELLIGENT ROBOTS AND SYSTEMS (IROS), 2021, : 4831 - 4838