Dense Color Constraints based 6D object pose estimation from RGB-D images

被引:0
|
作者
Wang, Zilun [1 ,2 ]
Liu, Yi [3 ,4 ]
Xu, Chi [1 ,2 ]
机构
[1] China Univ Geosci, Sch Automat, Wuhan 430074, Peoples R China
[2] Hubei Key Lab Adv Control & Intelligent Automat C, Wuhan 430074, Peoples R China
[3] CRRC Zhuzhou Locomot Co Ltd, Zhuzhou, Peoples R China
[4] Natl Innovat Ctr Adv Rail Transit Equipment, Zhuzhou, Hunan, Peoples R China
基金
中国国家自然科学基金;
关键词
Computer Vision; Deep Learning; Pose Estimation;
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
A key problem for 6D pose estimation based on RGB-D image input is how to make full use of these two different data sources. The previous work simply took the depth map as the input of the fourth channel of CNN, or carried out the fusion offeatures extracted from these two data sources with different methods. But their fusion did not impose the right constraints and lost some valuable information. In this work, we propose that DCC (Dense Color Constraints). 6D pose estimation performance can be improved effectively by using dense corresponding color constraints. Experiments show the most advanced end-to-end performance in LineMod datasets.
引用
下载
收藏
页码:6416 / 6420
页数:5
相关论文
共 50 条
  • [41] FormerPose: An efficient multi-scale fusion Transformer network based on RGB-D for 6D pose estimation
    Hou, Pihong
    Zhang, Yongfang
    Wu, Yi
    Yan, Pengyu
    Zhang, Fuqiang
    Journal of Visual Communication and Image Representation, 2025, 106
  • [42] An RGB-D Refinement Solution for Accurate Object Pose Estimation
    Saadi, Lounes
    Besbes, Bassem
    Kramm, Sebastien
    Bensrhair, Abdelaziz
    2021 IEEE INTERNATIONAL SYMPOSIUM ON MIXED AND AUGMENTED REALITY ADJUNCT PROCEEDINGS (ISMAR-ADJUNCT 2021), 2021, : 189 - 194
  • [43] 6DoF Pose Estimation of Transparent Object from a Single RGB-D Image
    Xu, Chi
    Chen, Jiale
    Yao, Mengyang
    Zhou, Jun
    Zhang, Lijun
    Liu, Yi
    SENSORS, 2020, 20 (23) : 1 - 19
  • [44] Confidence-Based 6D Object Pose Estimation
    Huang, Wei-Lun
    Hung, Chun-Yi
    Lin, I-Chen
    IEEE TRANSACTIONS ON MULTIMEDIA, 2022, 24 : 3025 - 3035
  • [45] 6D Object Pose Estimation Based on the Attention Mechanism
    Zhou, Guanyu
    INTERNATIONAL CONFERENCE ON ALGORITHMS, HIGH PERFORMANCE COMPUTING, AND ARTIFICIAL INTELLIGENCE (AHPCAI 2021), 2021, 12156
  • [46] Anchor-Based 6D Object Pose Estimation
    Liu, Zehao
    Wang, Hao
    Liu, Fuchang
    2021 IEEE 7TH INTERNATIONAL CONFERENCE ON VIRTUAL REALITY (ICVR 2021), 2021, : 33 - 40
  • [47] T-LESS: An RGB-D Dataset for 6D Pose Estimation of Texture-less Objects
    Hodan, Tomas
    Haluza, Pavel
    Obdrzalek, Stepan
    Matas, Jiri
    Lourakis, Manolis
    Zabulis, Xenophon
    2017 IEEE WINTER CONFERENCE ON APPLICATIONS OF COMPUTER VISION (WACV 2017), 2017, : 880 - 888
  • [48] 6D object pose estimation based on dense convolutional object center voting with improved accuracy and efficiency
    Ullah, Faheem
    Wei, Wu
    Fan, Zhun
    Yu, Qiuda
    VISUAL COMPUTER, 2024, 40 (08): : 5421 - 5434
  • [49] 6D object pose estimation for low-quality rendering images
    Zuo G.-Y.
    Zhang C.-W.
    Liu H.-X.
    Gong D.-X.
    Kongzhi yu Juece/Control and Decision, 2021, 37 (01): : 135 - 141
  • [50] Cognitively Inspired 6D Motion Estimation of a Noncooperative Target Using Monocular RGB-D Images
    Jie Chen
    Xiong Luo
    Huaping Liu
    Fuchun Sun
    Cognitive Computation, 2016, 8 : 105 - 113