BOP: Benchmark for 6D Object Pose Estimation

被引:225
|
作者
Hodan, Tomas [1 ]
Michel, Frank [2 ]
Brachmann, Eric [3 ]
Kehl, Wadim [4 ]
Buch, Anders Glent [5 ]
Kraft, Dirk [5 ]
Drost, Bertram [6 ]
Vidal, Joel [7 ]
Ihrke, Stephan [2 ]
Zabulis, Xenophon [8 ]
Sahin, Caner [9 ]
Manhardt, Fabian [10 ]
Tombari, Federico [10 ]
Kim, Tae-Kyun [9 ]
Matas, Jiri [1 ]
Rother, Carsten [3 ]
机构
[1] Czech Tech Univ, Prague, Czech Republic
[2] Tech Univ Dresden, Dresden, Germany
[3] Heidelberg Univ, Heidelberg, Germany
[4] Toyota Res Inst, Los Altos, CA USA
[5] Univ Southern Denmark, Odense, Denmark
[6] MVTec Software, Munich, Germany
[7] Taiwan Tech, Taipei, Taiwan
[8] FORTH Heraklion, Iraklion, Greece
[9] Imperial Coll London, London, England
[10] Tech Univ Munich, Munich, Germany
来源
关键词
D O I
10.1007/978-3-030-01249-6_2
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
We propose a benchmark for 6D pose estimation of a rigid object from a single RGB-D input image. The training data consists of a texture-mapped 3D object model or images of the object in known 6D poses. The benchmark comprises of: (i) eight datasets in a unified format that cover different practical scenarios, including two new datasets focusing on varying lighting conditions, (ii) an evaluation methodology with a pose-error function that deals with pose ambiguities, (iii) a comprehensive evaluation of 15 diverse recent methods that captures the status quo of the field, and (iv) an online evaluation system that is open for continuous submission of new results. The evaluation shows that methods based on point-pair features currently perform best, outperforming template matching methods, learning-based methods and methods based on 3D local features. The project website is available at bop.felk.cvut.cz.
引用
收藏
页码:19 / 35
页数:17
相关论文
共 50 条
  • [1] RobotP: A Benchmark Dataset for 6D Object Pose Estimation
    Yuan, Honglin
    Hoogenkamp, Tim
    Veltkamp, Remco C.
    [J]. SENSORS, 2021, 21 (04) : 1 - 26
  • [2] On Evaluation of 6D Object Pose Estimation
    Hodan, Tomas
    Matas, Jiri
    Obdrzalek, Stephan
    [J]. COMPUTER VISION - ECCV 2016 WORKSHOPS, PT III, 2016, 9915 : 606 - 619
  • [3] Single Shot 6D Object Pose Estimation
    Kleeberger, Kilian
    Huber, Marco F.
    [J]. 2020 IEEE INTERNATIONAL CONFERENCE ON ROBOTICS AND AUTOMATION (ICRA), 2020, : 6239 - 6245
  • [4] Survey on 6D Pose Estimation of Rigid Object
    Chen, Jiale
    Zhang, Lijun
    Liu, Yi
    Xu, Chi
    [J]. PROCEEDINGS OF THE 39TH CHINESE CONTROL CONFERENCE, 2020, : 7440 - 7445
  • [5] On Object Symmetries and 6D Pose Estimation from Images
    Pitteri, Giorgia
    Ramamonjisoa, Michael
    Ilic, Slobodan
    Lepetit, Vincent
    [J]. 2019 INTERNATIONAL CONFERENCE ON 3D VISION (3DV 2019), 2019, : 614 - 622
  • [6] SilhoNet: An RGB Method for 6D Object Pose Estimation
    Billings, Gideon
    Johnson-Roberson, Matthew
    [J]. IEEE ROBOTICS AND AUTOMATION LETTERS, 2019, 4 (04): : 3727 - 3734
  • [7] Confidence-Based 6D Object Pose Estimation
    Huang, Wei-Lun
    Hung, Chun-Yi
    Lin, I-Chen
    [J]. IEEE TRANSACTIONS ON MULTIMEDIA, 2022, 24 : 3025 - 3035
  • [8] ConvPoseCNN: Dense Convolutional 6D Object Pose Estimation
    Capellen, Catherine
    Schwarz, Max
    Behnke, Sven
    [J]. PROCEEDINGS OF THE 15TH INTERNATIONAL JOINT CONFERENCE ON COMPUTER VISION, IMAGING AND COMPUTER GRAPHICS THEORY AND APPLICATIONS, VOL 5: VISAPP, 2020, : 162 - 172
  • [9] Graph neural network for 6D object pose estimation
    Yin, Pengshuai
    Ye, Jiayong
    Lin, Guoshen
    Wu, Qingyao
    [J]. KNOWLEDGE-BASED SYSTEMS, 2021, 218
  • [10] Generalizable and Accurate 6D Object Pose Estimation Network
    Fu, Shouxu
    Li, Xiaoning
    Yu, Xiangdong
    Cao, Lu
    Li, Xingxing
    [J]. PATTERN RECOGNITION AND COMPUTER VISION, PRCV 2023, PT III, 2024, 14427 : 312 - 324