Single-Stage 6D Object Pose Estimation

被引:128
|
作者
Hu, Yinlin [1 ]
Fua, Pascal [1 ]
Wang, Wei [1 ]
Salzmann, Mathieu [1 ]
机构
[1] Ecole Polytech Fed Lausanne, CVLab, Lausanne, Switzerland
关键词
D O I
10.1109/CVPR42600.2020.00300
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Most recent 6D pose estimation frameworks first rely on a deep network to establish correspondences between 3D object keypoints and 2D image locations and then use a variant of a RANSAC-based Perspective-n-Point (PnP) algorithm. This two-stage process, however, is suboptimal: First, it is not end-to-end trainable. Second, training the deep network relies on a surrogate loss that does not directly reflect the final 6D pose estimation task. In this work, we introduce a deep architecture that directly regresses 6D poses from correspondences. It takes as input a group of candidate correspondences for each 3D keypoint and accounts for the fact that the order of the correspondences within each group is irrelevant, while the order of the groups, that is, of the 3D keypoints, is fixed. Our architecture is generic and can thus be exploited in conjunction with existing correspondence-extraction networks so as to yield single-stage 6D pose estimation frameworks. Our experiments demonstrate that these single-stage frameworks consistently outperform their two-stage counterparts in terms of both accuracy and speed.
引用
收藏
页码:2927 / 2936
页数:10
相关论文
共 50 条
  • [1] YOLO-6D-Pose: Enhancing YOLO for Single-Stage Monocular Multi-Object 6D Pose Estimation
    Maji, Debapriya
    Nagori, Soyeb
    Mathew, Manu
    Poddar, Deepak
    [J]. 2024 INTERNATIONAL CONFERENCE IN 3D VISION, 3DV 2024, 2024, : 1616 - 1625
  • [2] Single Shot 6D Object Pose Estimation
    Kleeberger, Kilian
    Huber, Marco F.
    [J]. 2020 IEEE INTERNATIONAL CONFERENCE ON ROBOTICS AND AUTOMATION (ICRA), 2020, : 6239 - 6245
  • [3] On Evaluation of 6D Object Pose Estimation
    Hodan, Tomas
    Matas, Jiri
    Obdrzalek, Stephan
    [J]. COMPUTER VISION - ECCV 2016 WORKSHOPS, PT III, 2016, 9915 : 606 - 619
  • [4] BOP: Benchmark for 6D Object Pose Estimation
    Hodan, Tomas
    Michel, Frank
    Brachmann, Eric
    Kehl, Wadim
    Buch, Anders Glent
    Kraft, Dirk
    Drost, Bertram
    Vidal, Joel
    Ihrke, Stephan
    Zabulis, Xenophon
    Sahin, Caner
    Manhardt, Fabian
    Tombari, Federico
    Kim, Tae-Kyun
    Matas, Jiri
    Rother, Carsten
    [J]. COMPUTER VISION - ECCV 2018, PT X, 2018, 11214 : 19 - 35
  • [5] Survey on 6D Pose Estimation of Rigid Object
    Chen, Jiale
    Zhang, Lijun
    Liu, Yi
    Xu, Chi
    [J]. PROCEEDINGS OF THE 39TH CHINESE CONTROL CONFERENCE, 2020, : 7440 - 7445
  • [6] CatTrack: Single-Stage Category-Level 6D Object Pose Tracking via Convolution and Vision Transformer
    Yu, Sheng
    Zhai, Di-Hua
    Xia, Yuanqing
    Li, Dong
    Zhao, Shiqi
    [J]. IEEE Transactions on Multimedia, 2024, 26 : 1665 - 1680
  • [7] CatTrack: Single-Stage Category-Level 6D Object Pose Tracking via Convolution and Vision Transformer
    Yu, Sheng
    Zhai, Di-Hua
    Xia, Yuanqing
    Li, Dong
    Zhao, Shiqi
    [J]. IEEE TRANSACTIONS ON MULTIMEDIA, 2024, 26 : 1665 - 1680
  • [8] On Object Symmetries and 6D Pose Estimation from Images
    Pitteri, Giorgia
    Ramamonjisoa, Michael
    Ilic, Slobodan
    Lepetit, Vincent
    [J]. 2019 INTERNATIONAL CONFERENCE ON 3D VISION (3DV 2019), 2019, : 614 - 622
  • [9] SilhoNet: An RGB Method for 6D Object Pose Estimation
    Billings, Gideon
    Johnson-Roberson, Matthew
    [J]. IEEE ROBOTICS AND AUTOMATION LETTERS, 2019, 4 (04): : 3727 - 3734
  • [10] Confidence-Based 6D Object Pose Estimation
    Huang, Wei-Lun
    Hung, Chun-Yi
    Lin, I-Chen
    [J]. IEEE TRANSACTIONS ON MULTIMEDIA, 2022, 24 : 3025 - 3035