Single Shot 6D Object Pose Estimation

被引:0
|
作者
Kleeberger, Kilian [1 ]
Huber, Marco F. [2 ,3 ]
机构
[1] Fraunhofer Inst Mfg Engn & Automat IPA, Dept Robot & Assist Syst, Nobelstr 12, D-70569 Stuttgart, Germany
[2] Fraunhofer Inst Mfg Engn & Automat IPA, Ctr Cyber Cognit Intelligence CCI, Nobelstr 12, D-70569 Stuttgart, Germany
[3] Univ Stuttgart, Inst Ind Mfg & Management IFF, Allmandring 35, D-70569 Stuttgart, Germany
关键词
D O I
10.1109/icra40945.2020.9197207
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In this paper, we introduce a novel single shot approach for 6D object pose estimation of rigid objects based on depth images. For this purpose, a fully convolutional neural network is employed, where the 3D input data is spatially discretized and pose estimation is considered as a regression task that is solved locally on the resulting volume elements. With 65 fps on a GPU, our Object Pose Network (OP-Net) is extremely fast, is optimized end-to-end, and estimates the 6D pose of multiple objects in the image simultaneously. Our approach does not require manually 6D pose-annotated real-world datasets and transfers to the real world, although being entirely trained on synthetic data. The proposed method is evaluated on public benchmark datasets, where we can demonstrate that state-of-the-art methods are significantly outperformed.
引用
收藏
页码:6239 / 6245
页数:7
相关论文
共 50 条
  • [1] Investigations on Output Parameterizations of Neural Networks for Single Shot 6D Object Pose Estimation
    Kleeberger, Kilian
    Voelk, Markus
    Bormann, Richard
    Huber, Marco F.
    [J]. 2021 IEEE INTERNATIONAL CONFERENCE ON ROBOTICS AND AUTOMATION (ICRA 2021), 2021, : 13916 - 13922
  • [2] Single-Stage 6D Object Pose Estimation
    Hu, Yinlin
    Fua, Pascal
    Wang, Wei
    Salzmann, Mathieu
    [J]. 2020 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2020, : 2927 - 2936
  • [3] On Evaluation of 6D Object Pose Estimation
    Hodan, Tomas
    Matas, Jiri
    Obdrzalek, Stephan
    [J]. COMPUTER VISION - ECCV 2016 WORKSHOPS, PT III, 2016, 9915 : 606 - 619
  • [4] Real-Time Seamless Single Shot 6D Object Pose Prediction
    Tekin, Bugra
    Sinha, Sudipta N.
    Fua, Pascal
    [J]. 2018 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2018, : 292 - 301
  • [5] BOP: Benchmark for 6D Object Pose Estimation
    Hodan, Tomas
    Michel, Frank
    Brachmann, Eric
    Kehl, Wadim
    Buch, Anders Glent
    Kraft, Dirk
    Drost, Bertram
    Vidal, Joel
    Ihrke, Stephan
    Zabulis, Xenophon
    Sahin, Caner
    Manhardt, Fabian
    Tombari, Federico
    Kim, Tae-Kyun
    Matas, Jiri
    Rother, Carsten
    [J]. COMPUTER VISION - ECCV 2018, PT X, 2018, 11214 : 19 - 35
  • [6] Survey on 6D Pose Estimation of Rigid Object
    Chen, Jiale
    Zhang, Lijun
    Liu, Yi
    Xu, Chi
    [J]. PROCEEDINGS OF THE 39TH CHINESE CONTROL CONFERENCE, 2020, : 7440 - 7445
  • [7] PoseMatcher: One-shot 6D Object Pose Estimation by Deep Feature Matching
    Castro, Pedro
    Kim, Tae-Kyun
    [J]. 2023 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION WORKSHOPS, ICCVW, 2023, : 2140 - 2149
  • [8] YOLO-6D+: Single Shot 6D Pose Estimation Using Privileged Silhouette Information
    Kang, Jia
    Liu, Wenjun
    Tu, Wenzhe
    Yang, Lu
    [J]. 2020 INTERNATIONAL CONFERENCE ON IMAGE PROCESSING AND ROBOTICS (ICIPROB 2020, 2020,
  • [9] On Object Symmetries and 6D Pose Estimation from Images
    Pitteri, Giorgia
    Ramamonjisoa, Michael
    Ilic, Slobodan
    Lepetit, Vincent
    [J]. 2019 INTERNATIONAL CONFERENCE ON 3D VISION (3DV 2019), 2019, : 614 - 622
  • [10] SilhoNet: An RGB Method for 6D Object Pose Estimation
    Billings, Gideon
    Johnson-Roberson, Matthew
    [J]. IEEE ROBOTICS AND AUTOMATION LETTERS, 2019, 4 (04): : 3727 - 3734