Survey on 6D Pose Estimation of Rigid Object

被引:0
|
作者
Chen, Jiale [1 ,2 ]
Zhang, Lijun [1 ,2 ]
Liu, Yi [3 ,4 ]
Xu, Chi [1 ,2 ]
机构
[1] China Univ Geosci, Sch Automat, Wuhan 430074, Peoples R China
[2] Hubei Key Lab Adv Control & Intelligent Automat C, Wuhan, Peoples R China
[3] CRRC Zhuzhou Locomot Co Ltd, Zhuzhou, Peoples R China
[4] Natl Innovat Ctr Adv Rail Transit Equipment, Wuhan, Peoples R China
基金
中国国家自然科学基金;
关键词
Pose Estimation; Feature Detection; Pose Ambiguity;
D O I
10.23919/ccc50068.2020.9189304
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Estimating 6D pose of rigid objects has gained increasing attention as it has become an curcial problem in rapidly growing technology related to robotics, augmented reality and autonomous driving. Therefore, the research on 6D pose estimation technology is of great significance. In this paper, firstly, current position of the field is summarized regarding object pose estimation. We found that deep learning combined with traditional methods can produce better results. Then, pose ambiguity which is an open problem needed further study is raised. Finally, the main problems of the current research and possible development directions are identified.
引用
收藏
页码:7440 / 7445
页数:6
相关论文
共 50 条
  • [1] On Evaluation of 6D Object Pose Estimation
    Hodan, Tomas
    Matas, Jiri
    Obdrzalek, Stephan
    [J]. COMPUTER VISION - ECCV 2016 WORKSHOPS, PT III, 2016, 9915 : 606 - 619
  • [2] Single Shot 6D Object Pose Estimation
    Kleeberger, Kilian
    Huber, Marco F.
    [J]. 2020 IEEE INTERNATIONAL CONFERENCE ON ROBOTICS AND AUTOMATION (ICRA), 2020, : 6239 - 6245
  • [3] BOP: Benchmark for 6D Object Pose Estimation
    Hodan, Tomas
    Michel, Frank
    Brachmann, Eric
    Kehl, Wadim
    Buch, Anders Glent
    Kraft, Dirk
    Drost, Bertram
    Vidal, Joel
    Ihrke, Stephan
    Zabulis, Xenophon
    Sahin, Caner
    Manhardt, Fabian
    Tombari, Federico
    Kim, Tae-Kyun
    Matas, Jiri
    Rother, Carsten
    [J]. COMPUTER VISION - ECCV 2018, PT X, 2018, 11214 : 19 - 35
  • [4] On Object Symmetries and 6D Pose Estimation from Images
    Pitteri, Giorgia
    Ramamonjisoa, Michael
    Ilic, Slobodan
    Lepetit, Vincent
    [J]. 2019 INTERNATIONAL CONFERENCE ON 3D VISION (3DV 2019), 2019, : 614 - 622
  • [5] SilhoNet: An RGB Method for 6D Object Pose Estimation
    Billings, Gideon
    Johnson-Roberson, Matthew
    [J]. IEEE ROBOTICS AND AUTOMATION LETTERS, 2019, 4 (04): : 3727 - 3734
  • [6] Confidence-Based 6D Object Pose Estimation
    Huang, Wei-Lun
    Hung, Chun-Yi
    Lin, I-Chen
    [J]. IEEE TRANSACTIONS ON MULTIMEDIA, 2022, 24 : 3025 - 3035
  • [7] ConvPoseCNN: Dense Convolutional 6D Object Pose Estimation
    Capellen, Catherine
    Schwarz, Max
    Behnke, Sven
    [J]. PROCEEDINGS OF THE 15TH INTERNATIONAL JOINT CONFERENCE ON COMPUTER VISION, IMAGING AND COMPUTER GRAPHICS THEORY AND APPLICATIONS, VOL 5: VISAPP, 2020, : 162 - 172
  • [8] Graph neural network for 6D object pose estimation
    Yin, Pengshuai
    Ye, Jiayong
    Lin, Guoshen
    Wu, Qingyao
    [J]. KNOWLEDGE-BASED SYSTEMS, 2021, 218
  • [9] Single-Stage 6D Object Pose Estimation
    Hu, Yinlin
    Fua, Pascal
    Wang, Wei
    Salzmann, Mathieu
    [J]. 2020 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2020, : 2927 - 2936
  • [10] Focal segmentation for robust 6D object pose estimation
    Yuning Ye
    Hanhoon Park
    [J]. Multimedia Tools and Applications, 2024, 83 : 47563 - 47585