Mobile Robot 6D Pose Estimation Using a Wireless Localization Network

被引:0
|
作者
Dobrev, Yassen [1 ]
Reustle, Christoph [1 ]
Pavlenko, Tatiana [1 ]
Cordes, Florian [2 ]
Vossiek, Martin [1 ]
机构
[1] Friedrich Alexander Univ Erlangen NurnbergFAU, Inst Microwaves & Photon LHFT, Erlangen, Germany
[2] DFKI GmbH, Robot Innovat Ctr, Bremen, Germany
关键词
wireless localization; 6D pose estimation; secondary radar; sensor fusion;
D O I
暂无
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Global navigation satellite systems (GNSS) are widely used for localization on Earth, but are not available on other planets, so that robotic planetary exploration missions need to use alternative methods for localization. This paper presents a wireless localization network (WLN) for estimating the 3D position and 3D orientation of a mobile robot. It consists of at least one reference 24 GHz radar node with known pose, and a mobile node on the robot. The reference nodes can determine the distance and both spatial angles to the mobile robot (thus locating it in 3D) using round-trip time of flight measurements and digital beamforming. We use an extended Kalman filter (EKF) to fuse these results with the readings from the mobile node, and an inclinometer to determine the complete 6D pose of the mobile robot. Measurements in a realistic scenario prove the feasibility of the proposed concept.
引用
收藏
页数:4
相关论文
共 50 条
  • [41] 6D Object Pose Estimation Using a Particle Filter With Better Initialization
    Lee, Gijae
    Kim, Jun-Sik
    Kim, Seungryong
    Kim, Kanggeon
    IEEE ACCESS, 2023, 11 : 11451 - 11462
  • [42] DRNet: A Depth-Based Regression Network for 6D Object Pose Estimation
    Jin, Lei
    Wang, Xiaojuan
    He, Mingshu
    Wang, Jingyue
    SENSORS, 2021, 21 (05) : 1 - 15
  • [43] Lightweight Full-Flow Bidirectional Fusion Network for 6D Pose Estimation
    Lin, Haotian
    Li, Yongchang
    Jiang, Jing
    Qin, Guangjun
    Computer Engineering and Applications, 2024, 60 (22) : 282 - 291
  • [44] PoseCNN: A Convolutional Neural Network for 6D Object Pose Estimation in Cluttered Scenes
    Xiang, Yu
    Schmidt, Tanner
    Narayanan, Venkatraman
    Fox, Dieter
    ROBOTICS: SCIENCE AND SYSTEMS XIV, 2018,
  • [45] 6D Object Pose Estimation Using Keypoints and Part Affinity Fields
    Zappel, Moritz
    Bultmann, Simon
    Behnke, Sven
    ROBOT WORLD CUP XXIV, ROBOCUP 2021, 2022, 13132 : 78 - 90
  • [46] Robust 6D Pose Estimation Using Dual Active Marker System
    Hyeon-Ju Choi
    Yeong-Bin Kim
    Bum Yong Park
    Dong-Hyun Lee
    International Journal of Control, Automation and Systems, 2025, 23 (2) : 382 - 391
  • [47] ACCURATE 6D OBJECT POSE ESTIMATION BY POSE CONDITIONED MESH RECONSTRUCTION
    Castro, Pedro
    Armagan, Anil
    Kim, Tae-Kyun
    2020 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING, 2020, : 4147 - 4151
  • [48] SilhoNet: An RGB Method for 6D Object Pose Estimation
    Billings, Gideon
    Johnson-Roberson, Matthew
    IEEE ROBOTICS AND AUTOMATION LETTERS, 2019, 4 (04): : 3727 - 3734
  • [49] Impact of Segmentation and Color Spaces in 6D Pose Estimation
    Pereira, Nuno
    Alexandre, Luis A.
    2021 IEEE INTERNATIONAL CONFERENCE ON AUTONOMOUS ROBOT SYSTEMS AND COMPETITIONS (ICARSC), 2021, : 228 - 233
  • [50] On Object Symmetries and 6D Pose Estimation from Images
    Pitteri, Giorgia
    Ramamonjisoa, Michael
    Ilic, Slobodan
    Lepetit, Vincent
    2019 INTERNATIONAL CONFERENCE ON 3D VISION (3DV 2019), 2019, : 614 - 622