6D Object Pose Estimation Using Keypoints and Part Affinity Fields

被引:4
|
作者
Zappel, Moritz [1 ]
Bultmann, Simon [1 ]
Behnke, Sven [1 ]
机构
[1] Univ Bonn, Autonomous Intelligent Syst, Comp Sci Inst 6, Bonn, Germany
来源
关键词
Object pose estimation; Robot perception; Deep learning;
D O I
10.1007/978-3-030-98682-7_7
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The task of 6D object pose estimation from RGB images is an important requirement for autonomous service robots to be able to interact with the real world. In this work, we present a two-step pipeline for estimating the 6 DoF translation and orientation of known objects. Keypoints and Part Affinity Fields (PAFs) are predicted from the input image adopting the OpenPose CNN architecture from human pose estimation. Object poses are then calculated from 2D-3D correspondences between detected and model keypoints via the PnP-RANSAC algorithm. The proposed approach is evaluated on the YCB-Video dataset and achieves accuracy on par with recent methods from the literature. Using PAFs to assemble detected keypoints into object instances proves advantageous over only using heatmaps. Models trained to predict keypoints of a single object class perform significantly better than models trained for several classes.
引用
收藏
页码:78 / 90
页数:13
相关论文
共 50 条
  • [1] Multi-View Keypoints for Reliable 6D Object Pose Estimation
    Li, Alan
    Schoellig, Angela P.
    [J]. 2023 IEEE INTERNATIONAL CONFERENCE ON ROBOTICS AND AUTOMATION, ICRA, 2023, : 6988 - 6994
  • [2] Orientation Keypoints for 6D Human Pose Estimation
    Fisch, Martin
    Clark, Ronald
    [J]. IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2022, 44 (12) : 10145 - 10158
  • [3] On Evaluation of 6D Object Pose Estimation
    Hodan, Tomas
    Matas, Jiri
    Obdrzalek, Stephan
    [J]. COMPUTER VISION - ECCV 2016 WORKSHOPS, PT III, 2016, 9915 : 606 - 619
  • [4] Single Shot 6D Object Pose Estimation
    Kleeberger, Kilian
    Huber, Marco F.
    [J]. 2020 IEEE INTERNATIONAL CONFERENCE ON ROBOTICS AND AUTOMATION (ICRA), 2020, : 6239 - 6245
  • [5] BOP: Benchmark for 6D Object Pose Estimation
    Hodan, Tomas
    Michel, Frank
    Brachmann, Eric
    Kehl, Wadim
    Buch, Anders Glent
    Kraft, Dirk
    Drost, Bertram
    Vidal, Joel
    Ihrke, Stephan
    Zabulis, Xenophon
    Sahin, Caner
    Manhardt, Fabian
    Tombari, Federico
    Kim, Tae-Kyun
    Matas, Jiri
    Rother, Carsten
    [J]. COMPUTER VISION - ECCV 2018, PT X, 2018, 11214 : 19 - 35
  • [6] Survey on 6D Pose Estimation of Rigid Object
    Chen, Jiale
    Zhang, Lijun
    Liu, Yi
    Xu, Chi
    [J]. PROCEEDINGS OF THE 39TH CHINESE CONTROL CONFERENCE, 2020, : 7440 - 7445
  • [7] Learning 6D Object Pose Estimation Using 3D Object Coordinates
    Brachmann, Eric
    Krull, Alexander
    Michel, Frank
    Gumhold, Stefan
    Shotton, Jamie
    Rother, Carsten
    [J]. COMPUTER VISION - ECCV 2014, PT II, 2014, 8690 : 536 - 551
  • [8] Shape Enhanced Keypoints Learning with Geometric Prior for 6D Object Pose Tracking
    Majcher, Mateusz
    Kwolek, Bogdan
    [J]. 2022 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION WORKSHOPS, CVPRW 2022, 2022, : 2985 - 2991
  • [9] 6D Object Pose Estimation Using a Particle Filter With Better Initialization
    Lee, Gijae
    Kim, Jun-Sik
    Kim, Seungryong
    Kim, Kanggeon
    [J]. IEEE ACCESS, 2023, 11 : 11451 - 11462
  • [10] Estimation of 6D Object Pose Using a 2D Bounding Box
    Hong, Yong
    Liu, Jin
    Jahangir, Zahid
    He, Sheng
    Zhang, Qing
    [J]. SENSORS, 2021, 21 (09)