Multi-View Keypoints for Reliable 6D Object Pose Estimation

被引:1
|
作者
Li, Alan [1 ,2 ]
Schoellig, Angela P. [1 ,2 ,3 ]
机构
[1] Univ Toronto, Inst Aerosp Studies, Dynam Syst Lab, Toronto, ON, Canada
[2] Vector Inst Artificial Intelligence, Toronto, ON, Canada
[3] Tech Univ Munich TUM, Munich, Germany
关键词
D O I
10.1109/ICRA48891.2023.10160354
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
6D Object pose estimation is a fundamental component in robotics enabling efficient interaction with the environment. 6D pose estimation is particularly challenging in bin-picking applications, where many objects are low-feature and reflective, and self-occlusion between objects of the same type is common. We propose a novel multi-view approach leveraging known camera transformations from an eye-in-hand setup to combine heatmap and keypoint estimates into a probability density map over 3D space. The result is a robust approach that is scalable in the number of views. It relies on a confidence score composed of keypoint probabilities and point-cloud alignment error, which allows reliable rejection of false positives. We demonstrate an average pose estimation error of approximately 0.5mm and 2 degrees across a variety of difficult low-feature and reflective objects in the ROBI dataset, while also surpassing the state-of-art correct detection rate, measured using the 10% object diameter threshold on ADD error.
引用
收藏
页码:6988 / 6994
页数:7
相关论文
共 50 条
  • [1] Multi-view 6D Object Pose Estimation and Camera Motion Planning using RGBD Images
    Sock, Juil
    Kasaei, S. Hamidreza
    Lopes, Luis Seabra
    Kim, Tae-Kyun
    [J]. 2017 IEEE INTERNATIONAL CONFERENCE ON COMPUTER VISION WORKSHOPS (ICCVW 2017), 2017, : 2228 - 2235
  • [2] 6D Object Pose Estimation Using Keypoints and Part Affinity Fields
    Zappel, Moritz
    Bultmann, Simon
    Behnke, Sven
    [J]. ROBOT WORLD CUP XXIV, ROBOCUP 2021, 2022, 13132 : 78 - 90
  • [3] Orientation Keypoints for 6D Human Pose Estimation
    Fisch, Martin
    Clark, Ronald
    [J]. IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2022, 44 (12) : 10145 - 10158
  • [4] SyMFM6D: Symmetry-Aware Multi-Directional Fusion for Multi-View 6D Object Pose Estimation
    Duffhauss, Fabian
    Koch, Sebastian
    Ziesche, Hanna
    Vien, Ngo Anh
    Neumann, Gerhard
    [J]. IEEE ROBOTICS AND AUTOMATION LETTERS, 2023, 8 (09): : 5315 - 5322
  • [5] 6D Pose Estimation for Textureless Objects on RGB Frames using Multi-View Optimization
    Yang, Jun
    Xue, Wenjie
    Ghavidel, Sahar
    Waslander, Steven L.
    [J]. 2023 IEEE INTERNATIONAL CONFERENCE ON ROBOTICS AND AUTOMATION, ICRA, 2023, : 2905 - 2912
  • [6] On Evaluation of 6D Object Pose Estimation
    Hodan, Tomas
    Matas, Jiri
    Obdrzalek, Stephan
    [J]. COMPUTER VISION - ECCV 2016 WORKSHOPS, PT III, 2016, 9915 : 606 - 619
  • [7] Multi Task-Guided 6D Object Pose Estimation
    Thu-Uyen Nguyen
    Van-Duc Vu
    Van-Thiep Nguyen
    Ngoc-Anh Hoang
    Duy-Quang Vu
    Duc-Thanh Tran
    Khanh-Toan Phan
    Anh-Truong Mai
    Van-Hiep Duong
    Cong-Trinh Chan
    Ngoc-Trung Ho
    Quang-Tri Duong
    Phuc-Quan Ngo
    Dinh-Cuong Hoang
    [J]. PROCEEDINGS OF THE 2024 9TH INTERNATIONAL CONFERENCE ON INTELLIGENT INFORMATION TECHNOLOGY, ICIIT 2024, 2024, : 215 - 222
  • [8] Single Shot 6D Object Pose Estimation
    Kleeberger, Kilian
    Huber, Marco F.
    [J]. 2020 IEEE INTERNATIONAL CONFERENCE ON ROBOTICS AND AUTOMATION (ICRA), 2020, : 6239 - 6245
  • [9] BOP: Benchmark for 6D Object Pose Estimation
    Hodan, Tomas
    Michel, Frank
    Brachmann, Eric
    Kehl, Wadim
    Buch, Anders Glent
    Kraft, Dirk
    Drost, Bertram
    Vidal, Joel
    Ihrke, Stephan
    Zabulis, Xenophon
    Sahin, Caner
    Manhardt, Fabian
    Tombari, Federico
    Kim, Tae-Kyun
    Matas, Jiri
    Rother, Carsten
    [J]. COMPUTER VISION - ECCV 2018, PT X, 2018, 11214 : 19 - 35
  • [10] Survey on 6D Pose Estimation of Rigid Object
    Chen, Jiale
    Zhang, Lijun
    Liu, Yi
    Xu, Chi
    [J]. PROCEEDINGS OF THE 39TH CHINESE CONTROL CONFERENCE, 2020, : 7440 - 7445