ACCURATE 6D OBJECT POSE ESTIMATION BY POSE CONDITIONED MESH RECONSTRUCTION

被引:0
|
作者
Castro, Pedro [1 ]
Armagan, Anil [1 ]
Kim, Tae-Kyun [1 ]
机构
[1] Imperial Comp Vis & Learning Lab ICVL, London, England
关键词
D O I
10.1109/icassp40776.2020.9053627
中图分类号
O42 [声学];
学科分类号
070206 ; 082403 ;
摘要
Current 6D object pose estimation methods consist of Deep Convolutional Neural Networks fully optimized for a single object but with its architecture standardized among objects with different shapes. In contrast to previous works, we explicitly exploit each object's distinct topological information with an automated process and prior to any post-processing refinement stage. In order to achieve this, we propose a learning framework in which a Graph Convolutional Neural Network reconstructs a Pose Conditioned 3D mesh of the object. A robust estimation of the allocentric orientation of the target object is recovered by computing, in a differentiable manner, the Procrustes' alignment between the canonical and reconstructed dense 3D meshes. Our method is capable of self validating its pose estimation by measuring the quality of the reconstructed mesh, which is invaluable in real life applications. In our experiments on the LINEMOD, OCCLUSION and YCB-Video benchmarks, the proposed method outperforms state-of-the-arts.
引用
收藏
页码:4147 / 4151
页数:5
相关论文
共 50 条
  • [1] Generalizable and Accurate 6D Object Pose Estimation Network
    Fu, Shouxu
    Li, Xiaoning
    Yu, Xiangdong
    Cao, Lu
    Li, Xingxing
    [J]. PATTERN RECOGNITION AND COMPUTER VISION, PRCV 2023, PT III, 2024, 14427 : 312 - 324
  • [2] Accurate 6D Object Pose Estimation and Refinement in Cluttered Scenes
    Jin, Yixiang
    Rossiter, John Anthony
    Veres, Sandor M.
    [J]. PROCEEDINGS OF THE 2ND INTERNATIONAL CONFERENCE ON ROBOTICS, COMPUTER VISION AND INTELLIGENT SYSTEMS (ROBOVIS), 2021, : 31 - 39
  • [3] On Evaluation of 6D Object Pose Estimation
    Hodan, Tomas
    Matas, Jiri
    Obdrzalek, Stephan
    [J]. COMPUTER VISION - ECCV 2016 WORKSHOPS, PT III, 2016, 9915 : 606 - 619
  • [4] A Pose Proposal and Refinement Network for Better 6D Object Pose Estimation
    Trabelsi, Ameni
    Chaabane, Mohamed
    Blanchard, Nathaniel
    Beveridge, Ross
    [J]. 2021 IEEE WINTER CONFERENCE ON APPLICATIONS OF COMPUTER VISION WACV 2021, 2021, : 2381 - 2390
  • [5] PointPoseNet: Point Pose Network for Robust 6D Object Pose Estimation
    Chen, Wei
    Duan, Jinming
    Basevi, Hector
    Chang, Hyung Jin
    Leonardis, Ales
    [J]. 2020 IEEE WINTER CONFERENCE ON APPLICATIONS OF COMPUTER VISION (WACV), 2020, : 2813 - 2822
  • [6] BOP: Benchmark for 6D Object Pose Estimation
    Hodan, Tomas
    Michel, Frank
    Brachmann, Eric
    Kehl, Wadim
    Buch, Anders Glent
    Kraft, Dirk
    Drost, Bertram
    Vidal, Joel
    Ihrke, Stephan
    Zabulis, Xenophon
    Sahin, Caner
    Manhardt, Fabian
    Tombari, Federico
    Kim, Tae-Kyun
    Matas, Jiri
    Rother, Carsten
    [J]. COMPUTER VISION - ECCV 2018, PT X, 2018, 11214 : 19 - 35
  • [7] Single Shot 6D Object Pose Estimation
    Kleeberger, Kilian
    Huber, Marco F.
    [J]. 2020 IEEE INTERNATIONAL CONFERENCE ON ROBOTICS AND AUTOMATION (ICRA), 2020, : 6239 - 6245
  • [8] Survey on 6D Pose Estimation of Rigid Object
    Chen, Jiale
    Zhang, Lijun
    Liu, Yi
    Xu, Chi
    [J]. PROCEEDINGS OF THE 39TH CHINESE CONTROL CONFERENCE, 2020, : 7440 - 7445
  • [9] GeoPose: Dense Reconstruction Guided 6D Object Pose Estimation With Geometric Consistency
    Wang, Deming
    Zhou, Guangliang
    Yan, Yi
    Chen, Huiyi
    Chen, Qijun
    [J]. IEEE TRANSACTIONS ON MULTIMEDIA, 2022, 24 : 4394 - 4408
  • [10] On Object Symmetries and 6D Pose Estimation from Images
    Pitteri, Giorgia
    Ramamonjisoa, Michael
    Ilic, Slobodan
    Lepetit, Vincent
    [J]. 2019 INTERNATIONAL CONFERENCE ON 3D VISION (3DV 2019), 2019, : 614 - 622