Mobile Robot 6D Pose Estimation Using a Wireless Localization Network

被引:0
|
作者
Dobrev, Yassen [1 ]
Reustle, Christoph [1 ]
Pavlenko, Tatiana [1 ]
Cordes, Florian [2 ]
Vossiek, Martin [1 ]
机构
[1] Friedrich Alexander Univ Erlangen NurnbergFAU, Inst Microwaves & Photon LHFT, Erlangen, Germany
[2] DFKI GmbH, Robot Innovat Ctr, Bremen, Germany
关键词
wireless localization; 6D pose estimation; secondary radar; sensor fusion;
D O I
暂无
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Global navigation satellite systems (GNSS) are widely used for localization on Earth, but are not available on other planets, so that robotic planetary exploration missions need to use alternative methods for localization. This paper presents a wireless localization network (WLN) for estimating the 3D position and 3D orientation of a mobile robot. It consists of at least one reference 24 GHz radar node with known pose, and a mobile node on the robot. The reference nodes can determine the distance and both spatial angles to the mobile robot (thus locating it in 3D) using round-trip time of flight measurements and digital beamforming. We use an extended Kalman filter (EKF) to fuse these results with the readings from the mobile node, and an inclinometer to determine the complete 6D pose of the mobile robot. Measurements in a realistic scenario prove the feasibility of the proposed concept.
引用
收藏
页数:4
相关论文
共 50 条
  • [21] Dual Branch PnP Based Network for Monocular 6D Pose Estimation
    Liang, Jia-Yu
    Zhang, Hong-Bo
    Lei, Qing
    Du, Ji-Xiang
    Lin, Tian-Liang
    INTELLIGENT AUTOMATION AND SOFT COMPUTING, 2023, 36 (03): : 3243 - 3256
  • [22] An efficient network for category-level 6D object pose estimation
    Sun, Shantong
    Liu, Rongke
    Sun, Shuqiao
    Yang, Xinxin
    Lu, Guangshan
    SIGNAL IMAGE AND VIDEO PROCESSING, 2021, 15 (07) : 1643 - 1651
  • [23] 6D Pose Estimation of Transparent Objects Using Synthetic Data
    Byambaa, Munkhtulga
    Koutaki, Gou
    Choimaa, Lodoiravsal
    FRONTIERS OF COMPUTER VISION (IW-FCV 2022), 2022, 1578 : 3 - 17
  • [24] An efficient network for category-level 6D object pose estimation
    Shantong Sun
    Rongke Liu
    Shuqiao Sun
    Xinxin Yang
    Guangshan Lu
    Signal, Image and Video Processing, 2021, 15 : 1643 - 1651
  • [25] A modal fusion network with dual attention mechanism for 6D pose estimation
    Wei, Liangrui
    Xie, Feifei
    Sun, Lin
    Chen, Jinpeng
    Zhang, Zhipeng
    VISUAL COMPUTER, 2024, 40 (10): : 7411 - 7425
  • [26] BDR6D: Bidirectional Deep Residual Fusion Network for 6D Pose Estimation
    Liu, Penglei
    Zhang, Qieshi
    Cheng, Jun
    IEEE TRANSACTIONS ON AUTOMATION SCIENCE AND ENGINEERING, 2024, 21 (02) : 1793 - 1804
  • [27] DON6D: a decoupled one-stage network for 6D pose estimation
    Wang, Zheng
    Tu, Hangyao
    Qian, Yutong
    Zhao, Yanwei
    SCIENTIFIC REPORTS, 2024, 14 (01)
  • [28] FFB6D: A Full Flow Bidirectional Fusion Network for 6D Pose Estimation
    He, Yisheng
    Huang, Haibin
    Fan, Haoqiang
    Chen, Qifeng
    Sun, Jian
    2021 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION, CVPR 2021, 2021, : 3002 - 3012
  • [29] EFN6D: an efficient RGB-D fusion network for 6D pose estimation
    Wang Y.
    Jiang X.
    Fujita H.
    Fang Z.
    Qiu X.
    Chen J.
    Journal of Ambient Intelligence and Humanized Computing, 2024, 15 (01) : 75 - 88
  • [30] Single Shot 6D Object Pose Estimation
    Kleeberger, Kilian
    Huber, Marco F.
    2020 IEEE INTERNATIONAL CONFERENCE ON ROBOTICS AND AUTOMATION (ICRA), 2020, : 6239 - 6245