DualPoseNet: Category-level 6D Object Pose and Size Estimation Using Dual Pose Network with Refined Learning of Pose Consistency

被引:39
|
作者
Lin, Jiehong [1 ]
Wei, Zewei [1 ,2 ]
Li, Zhihao [3 ]
Xu, Songcen [3 ]
Jia, Kui [1 ]
Li, Yuanqing [1 ]
机构
[1] South China Univ Technol, Guangzhou, Peoples R China
[2] DexForce Technol Co Ltd, New York, NY USA
[3] Huawei Technol Co Ltd, Noahs Ark Lab, Shenzhen, Peoples R China
基金
中国国家自然科学基金;
关键词
REAL-TIME DETECTION;
D O I
10.1109/ICCV48922.2021.00354
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Category-level 6D object pose and size estimation is to predict full pose configurations of rotation, translation, and size for object instances observed in single, arbitrary views of cluttered scenes. In this paper, we propose a new method of Dual Pose Network with refined learning of pose consistency for this task, shortened as DualPoseNet. DualPoseNet stacks two parallel pose decoders on top of a shared pose encoder, where the implicit decoder predicts object poses with a working mechanism different from that of the explicit one; they thus impose complementary supervision on the training of pose encoder. We construct the encoder based on spherical convolutions, and design a module of Spherical Fusion wherein for a better embedding of pose-sensitive features from the appearance and shape observations. Given no testing CAD models, it is the novel introduction of the implicit decoder that enables the refined pose prediction during testing, by enforcing the predicted pose consistency between the two decoders using a self-adaptive loss term. Thorough experiments on benchmarks of both category- and instance-level object pose datasets confirm efficacy of our designs. DualPoseNet outperforms existing methods with a large margin in the regime of high precision.
引用
收藏
页码:3540 / 3549
页数:10
相关论文
共 50 条
  • [1] An efficient network for category-level 6D object pose estimation
    Sun, Shantong
    Liu, Rongke
    Sun, Shuqiao
    Yang, Xinxin
    Lu, Guangshan
    [J]. SIGNAL IMAGE AND VIDEO PROCESSING, 2021, 15 (07) : 1643 - 1651
  • [2] An efficient network for category-level 6D object pose estimation
    Shantong Sun
    Rongke Liu
    Shuqiao Sun
    Xinxin Yang
    Guangshan Lu
    [J]. Signal, Image and Video Processing, 2021, 15 : 1643 - 1651
  • [3] GSNet: Model Reconstruction Network for Category-level 6D Object Pose and Size Estimation
    Liu, Penglei
    Zhang, Qieshi
    Cheng, Jun
    [J]. 2023 IEEE INTERNATIONAL CONFERENCE ON ROBOTICS AND AUTOMATION, ICRA, 2023, : 2898 - 2904
  • [4] CatFormer: Category-Level 6D Object Pose Estimation with Transformer
    Yu, Sheng
    Zhai, Di-Hua
    Xia, Yuanqing
    [J]. THIRTY-EIGHTH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE, VOL 38 NO 7, 2024, : 6808 - 6816
  • [5] RANSAC Optimization for Category-level 6D Object Pose Estimation
    Chen, Ying
    Kang, Guixia
    Wang, Yiping
    [J]. 2020 5TH INTERNATIONAL CONFERENCE ON MECHANICAL, CONTROL AND COMPUTER ENGINEERING (ICMCCE 2020), 2020, : 50 - 56
  • [6] Normalized Object Coordinate Space for Category-Level 6D Object Pose and Size Estimation
    Wang, He
    Sridhar, Srinath
    Huang, Jingwei
    Valentin, Julien
    Song, Shuran
    Guibas, Leonidas J.
    [J]. 2019 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2019), 2019, : 2637 - 2646
  • [7] SD-Pose: Structural Discrepancy Aware Category-Level 6D Object Pose Estimation
    Li, Guowei
    Zhu, Dongchen
    Zhang, Guanghui
    Shi, Wenjun
    Zhang, Tianyu
    Zhang, Xiaolin
    Li, Jiamao
    [J]. 2023 IEEE/CVF WINTER CONFERENCE ON APPLICATIONS OF COMPUTER VISION (WACV), 2023, : 5674 - 5683
  • [8] Adversarial imitation learning-based network for category-level 6D object pose estimation
    Sun, Shantong
    Bao, Xu
    Kaushik, Aryan
    [J]. MACHINE VISION AND APPLICATIONS, 2024, 35 (05)
  • [9] Learning geometric consistency and discrepancy for category-level 6D object pose estimation from point clouds
    Zou, Lu
    Huang, Zhangjin
    Gu, Naijie
    Wang, Guoping
    [J]. PATTERN RECOGNITION, 2024, 145
  • [10] Self-Supervised Category-Level 6D Object Pose Estimation With Optical Flow Consistency
    Zaccaria, Michela
    Manhardt, Fabian
    Di, Yan
    Tombari, Federico
    Aleotti, Jacopo
    Giorgini, Mikhail
    [J]. IEEE ROBOTICS AND AUTOMATION LETTERS, 2023, 8 (05) : 2510 - 2517