DualPoseNet: Category-level 6D Object Pose and Size Estimation Using Dual Pose Network with Refined Learning of Pose Consistency

被引:39
|
作者
Lin, Jiehong [1 ]
Wei, Zewei [1 ,2 ]
Li, Zhihao [3 ]
Xu, Songcen [3 ]
Jia, Kui [1 ]
Li, Yuanqing [1 ]
机构
[1] South China Univ Technol, Guangzhou, Peoples R China
[2] DexForce Technol Co Ltd, New York, NY USA
[3] Huawei Technol Co Ltd, Noahs Ark Lab, Shenzhen, Peoples R China
基金
中国国家自然科学基金;
关键词
REAL-TIME DETECTION;
D O I
10.1109/ICCV48922.2021.00354
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Category-level 6D object pose and size estimation is to predict full pose configurations of rotation, translation, and size for object instances observed in single, arbitrary views of cluttered scenes. In this paper, we propose a new method of Dual Pose Network with refined learning of pose consistency for this task, shortened as DualPoseNet. DualPoseNet stacks two parallel pose decoders on top of a shared pose encoder, where the implicit decoder predicts object poses with a working mechanism different from that of the explicit one; they thus impose complementary supervision on the training of pose encoder. We construct the encoder based on spherical convolutions, and design a module of Spherical Fusion wherein for a better embedding of pose-sensitive features from the appearance and shape observations. Given no testing CAD models, it is the novel introduction of the implicit decoder that enables the refined pose prediction during testing, by enforcing the predicted pose consistency between the two decoders using a self-adaptive loss term. Thorough experiments on benchmarks of both category- and instance-level object pose datasets confirm efficacy of our designs. DualPoseNet outperforms existing methods with a large margin in the regime of high precision.
引用
收藏
页码:3540 / 3549
页数:10
相关论文
共 50 条
  • [31] 6D-ViT: Category-Level 6D Object Pose Estimation via Transformer-Based Instance Representation Learning
    Zou, Lu
    Huang, Zhangjin
    Gu, Naijie
    Wang, Guoping
    [J]. IEEE TRANSACTIONS ON IMAGE PROCESSING, 2022, 31 : 6907 - 6921
  • [32] HS-Pose: Hybrid Scope Feature Extraction for Category-level Object Pose Estimation
    Zheng, Linfang
    Wang, Chen
    Sun, Yinghan
    Dasgupta, Esha
    Chen, Hua
    Leonardis, Ales
    Zhang, Wei
    Chang, Hyung Jin
    [J]. 2023 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2023, : 17163 - 17173
  • [33] A Visual Navigation Perspective for Category-Level Object Pose Estimation
    Guo, Jiaxin
    Zhong, Fangxun
    Xiong, Rong
    Liu, Yunhui
    Wang, Yue
    Liao, Yiyi
    [J]. COMPUTER VISION - ECCV 2022, PT VI, 2022, 13666 : 123 - 141
  • [34] iCaps: Iterative Category-Level Object Pose and Shape Estimation
    Deng, Xinke
    Geng, Junyi
    Bretl, Timothy
    Xiang, Yu
    Fox, Dieter
    [J]. IEEE ROBOTICS AND AUTOMATION LETTERS, 2022, 7 (02): : 1784 - 1791
  • [35] Zero-Shot Category-Level Object Pose Estimation
    Goodwin, Walter
    Vaze, Sagar
    Havoutis, Ioannis
    Posner, Ingmar
    [J]. COMPUTER VISION, ECCV 2022, PT XXXIX, 2022, 13699 : 516 - 532
  • [36] Category-Level Metric Scale Object Shape and Pose Estimation
    Lee, Taeyeop
    Lee, Byeong-Uk
    Kim, Myungchul
    Kweon, I. S.
    [J]. IEEE ROBOTICS AND AUTOMATION LETTERS, 2021, 6 (04) : 8575 - 8582
  • [37] VI-Net: Boosting Category-level 6D Object Pose Estimation via Learning Decoupled Rotations on the Spherical Representations
    Lin, Jiehong
    Wei, Zewei
    Zhang, Yabin
    Jia, Kui
    [J]. 2023 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV 2023), 2023, : 13955 - 13965
  • [38] Category-Level Articulated Object 9D Pose Estimation via Reinforcement Learning
    Liu, Liu
    Du, Jianming
    Wu, Hao
    Yang, Xun
    Liu, Zhenguang
    Hong, Richang
    Wang, Meng
    [J]. PROCEEDINGS OF THE 31ST ACM INTERNATIONAL CONFERENCE ON MULTIMEDIA, MM 2023, 2023, : 728 - 736
  • [39] On Evaluation of 6D Object Pose Estimation
    Hodan, Tomas
    Matas, Jiri
    Obdrzalek, Stephan
    [J]. COMPUTER VISION - ECCV 2016 WORKSHOPS, PT III, 2016, 9915 : 606 - 619
  • [40] SO(3)-Pose: SO(3)-Equivariance Learning for 6D Object Pose Estimation
    Pan, Haoran
    Zhou, Jun
    Liu, Yuanpeng
    Lu, Xuequan
    Wang, Weiming
    Yan, Xuefeng
    Wei, Mingqiang
    [J]. COMPUTER GRAPHICS FORUM, 2022, 41 (07) : 371 - 381