Predictive modeling of flexible EHD pumps using Kolmogorov-Arnold Networks

被引:14
|
作者
Peng, Yanhong [1 ]
Wang, Yuxin [2 ,3 ]
Hu, Fangchao [1 ]
He, Miao [1 ]
Mao, Zebing [4 ]
Huang, Xia [1 ]
Ding, Jun [1 ]
机构
[1] Chongqing Univ Technol, Coll Mech Engn, Chongqing 400054, Peoples R China
[2] Nagoya Univ, Dept Mech Syst Engn, Tokai Natl Higher Educ & Res, Nagoya 4648603, Japan
[3] Jiangsu Univ Sci & Technol, Sch Energy & Power, Zhenjiang 212100, Peoples R China
[4] Yamaguchi Univ, Fac Engn, Yamaguchi 7558611, Japan
来源
关键词
Kolmogorov-Arnold Networks; Electrohydrodynamic pumps; Neural network;
D O I
10.1016/j.birob.2024.100184
中图分类号
TP24 [机器人技术];
学科分类号
080202 ; 1405 ;
摘要
We present a novel approach to predicting the pressure and flow rate of flexible electrohydrodynamic pumps using the Kolmogorov-Arnold Network. Inspired by the Kolmogorov-Arnold representation theorem, KAN replaces fixed activation functions with learnable spline-based activation functions, enabling it to approximate complex nonlinear functions more effectively than traditional models like Multi-Layer Perceptron and Random Forest. We evaluated KAN on a dataset of flexible EHD pump parameters and compared its performance against RF, and MLP models. KAN achieved superior predictive accuracy, with Mean Squared Errors of 12.186 and 0.012 for pressure and flow rate predictions, respectively. The symbolic formulas extracted from KAN provided insights into the nonlinear relationships between input parameters and pump performance. These findings demonstrate that KAN offers exceptional accuracy and interpretability, making it a promising alternative for predictive modeling in electrohydrodynamic pumping. (c) 2024 The Author(s). Published by Elsevier B.V. on behalf of Shandong University. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
引用
收藏
页数:3
相关论文
共 50 条
  • [1] SineKAN: Kolmogorov-Arnold Networks using sinusoidal activation functions
    Reinhardt, Eric
    Ramakrishnan, Dinesh
    Gleyzer, Sergei
    FRONTIERS IN ARTIFICIAL INTELLIGENCE, 2025, 7
  • [2] Solution of an Inverse Problem of Optical Spectroscopy Using Kolmogorov-Arnold Networks
    Kupriyanov, G.
    Isaev, I.
    Laptinskiy, K.
    Dolenko, T.
    Dolenko, S.
    OPTICAL MEMORY AND NEURAL NETWORKS, 2024, 33 (SUPPL3) : S475 - S482
  • [3] Kolmogorov-Arnold networks in nuclear binding energy prediction
    Liu, Hao
    Lei, Jin
    Ren, Zhongzhou
    PHYSICAL REVIEW C, 2025, 111 (02)
  • [4] Battery state of charge estimation for electric vehicle using Kolmogorov-Arnold networks
    Sulaiman, Mohd Herwan
    Mustaffa, Zuriani
    Mohamed, Amir Izzani
    Samsudin, Ahmad Salihin
    Rashid, Muhammad Ikram Mohd
    ENERGY, 2024, 311
  • [5] Detection of Bus Driver Mobile Phone Usage Using Kolmogorov-Arnold Networks
    Hollosi, Janos
    Ballagi, Aron
    Kovacs, Gabor
    Fischer, Szabolcs
    Nagy, Viktor
    COMPUTERS, 2024, 13 (09)
  • [6] Error bounds for deep ReLU networks using the Kolmogorov-Arnold superposition theorem
    Montanelli, Hadrien
    Yang, Haizhao
    NEURAL NETWORKS, 2020, 129 : 1 - 6
  • [7] Kolmogorov-Arnold Networks for Semi-Supervised Impedance Inversion
    Liu, Mingming
    Bossmann, Florian
    Ma, Jianwei
    IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2025, 22
  • [8] An intrusion detection model based on Convolutional Kolmogorov-Arnold Networks
    Wang, Zhen
    Zainal, Anazida
    Siraj, Maheyzah Md
    Ghaleb, Fuad A.
    Hao, Xue
    Han, Shaoyong
    SCIENTIFIC REPORTS, 2025, 15 (01):
  • [9] Advancing Real-Estate Forecasting: A Novel Approach Using Kolmogorov-Arnold Networks
    Viktoratos, Iosif
    Tsadiras, Athanasios
    ALGORITHMS, 2025, 18 (02)
  • [10] FloodKAN: Integrating Kolmogorov-Arnold Networks for Efficient Flood Extent Extraction
    Wang, Cong
    Zhang, Xiaohan
    Liu, Liwei
    REMOTE SENSING, 2025, 17 (04)