Predictive modeling of flexible EHD pumps using Kolmogorov-Arnold Networks

被引:14
|
作者
Peng, Yanhong [1 ]
Wang, Yuxin [2 ,3 ]
Hu, Fangchao [1 ]
He, Miao [1 ]
Mao, Zebing [4 ]
Huang, Xia [1 ]
Ding, Jun [1 ]
机构
[1] Chongqing Univ Technol, Coll Mech Engn, Chongqing 400054, Peoples R China
[2] Nagoya Univ, Dept Mech Syst Engn, Tokai Natl Higher Educ & Res, Nagoya 4648603, Japan
[3] Jiangsu Univ Sci & Technol, Sch Energy & Power, Zhenjiang 212100, Peoples R China
[4] Yamaguchi Univ, Fac Engn, Yamaguchi 7558611, Japan
来源
关键词
Kolmogorov-Arnold Networks; Electrohydrodynamic pumps; Neural network;
D O I
10.1016/j.birob.2024.100184
中图分类号
TP24 [机器人技术];
学科分类号
080202 ; 1405 ;
摘要
We present a novel approach to predicting the pressure and flow rate of flexible electrohydrodynamic pumps using the Kolmogorov-Arnold Network. Inspired by the Kolmogorov-Arnold representation theorem, KAN replaces fixed activation functions with learnable spline-based activation functions, enabling it to approximate complex nonlinear functions more effectively than traditional models like Multi-Layer Perceptron and Random Forest. We evaluated KAN on a dataset of flexible EHD pump parameters and compared its performance against RF, and MLP models. KAN achieved superior predictive accuracy, with Mean Squared Errors of 12.186 and 0.012 for pressure and flow rate predictions, respectively. The symbolic formulas extracted from KAN provided insights into the nonlinear relationships between input parameters and pump performance. These findings demonstrate that KAN offers exceptional accuracy and interpretability, making it a promising alternative for predictive modeling in electrohydrodynamic pumping. (c) 2024 The Author(s). Published by Elsevier B.V. on behalf of Shandong University. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
引用
收藏
页数:3
相关论文
共 50 条
  • [21] Enhancing Low-Light Images with Kolmogorov-Arnold Networks in Transformer Attention
    Brateanu, Alexandru
    Balmez, Raul
    Orhei, Ciprian
    Ancuti, Cosmin
    Ancuti, Codruta
    SENSORS, 2025, 25 (02)
  • [22] CKAN: Convolutional Kolmogorov-Arnold Networks Model for Intrusion Detection in IoT Environment
    Abd Elaziz, Mohamed
    Fares, Ibrahim Ahmed
    Aseeri, Ahmad O.
    IEEE ACCESS, 2024, 12 : 134837 - 134851
  • [23] Utilizing the Kolmogorov-Arnold Networks for chiller energy consumption prediction in commercial building
    Sulaiman, Mohd Herwan
    Mustaffa, Zuriani
    Saealal, Muhammad Salihin
    Saari, Mohd Mawardi
    Ahmad, Abu Zaharin
    JOURNAL OF BUILDING ENGINEERING, 2024, 96
  • [24] How to Learn More? Exploring Kolmogorov-Arnold Networks for Hyperspectral Image Classification
    Jamali, Ali
    Roy, Swalpa Kumar
    Hong, Danfeng
    Lu, Bing
    Ghamisi, Pedram
    REMOTE SENSING, 2024, 16 (21)
  • [25] A precise magnetic modeling method for scientific satellites based on a self-attention mechanism and Kolmogorov-Arnold Networks
    Ye Liu
    Xingjian Shi
    Wenzhe Yang
    Zhiming Cai
    Huawang Li
    Astronomical Techniques and Instruments, 2025, 2 (01) : 1 - 9
  • [26] Kolmogorov-Arnold Networks modeling of wall pressure wavenumber-frequency spectra under turbulent boundary layers
    Zhou, Zhiteng
    Liu, Yi
    Wang, Shizhao
    He, Guowei
    THEORETICAL AND APPLIED MECHANICS LETTERS, 2025, 15 (02)
  • [27] Simulating fish autonomous swimming behaviours using deep reinforcement learning based on Kolmogorov-Arnold Networks
    Li, Tao
    Zhang, Chunze
    Zhang, Guibin
    Zhou, Qin
    Hou, Ji
    Diao, Wei
    Meng, Wanwan
    Zhang, Xujin
    BIOINSPIRATION & BIOMIMETICS, 2025, 20 (02)
  • [28] Predicting the uplift capacity of circular anchors in frictional-cohesive soils using Kolmogorov-Arnold networks
    Tran Vu-Hoang
    Tan Nguyen
    Jim Shiau
    Hung-Thinh Pham-Tran
    Trung Nguyen-Thoi
    Scientific Reports, 15 (1)
  • [29] Secure IoT sensor networks through advanced anomaly detection with Kolmogorov-Arnold Networks (KANs)
    Mishra, Shreshtha
    Jain, Usha
    MICROSYSTEM TECHNOLOGIES-MICRO-AND NANOSYSTEMS-INFORMATION STORAGE AND PROCESSING SYSTEMS, 2025,
  • [30] Classifying IoT Botnet Attacks With Kolmogorov-Arnold Networks: A Comparative Analysis of Architectural Variations
    Do, Phuc Hao
    Le, Tran Duc
    Dinh, Truong Duy
    Pham, Van Dai
    IEEE ACCESS, 2025, 13 : 16072 - 16093