Predictive modeling of flexible EHD pumps using Kolmogorov-Arnold Networks

被引:14
|
作者
Peng, Yanhong [1 ]
Wang, Yuxin [2 ,3 ]
Hu, Fangchao [1 ]
He, Miao [1 ]
Mao, Zebing [4 ]
Huang, Xia [1 ]
Ding, Jun [1 ]
机构
[1] Chongqing Univ Technol, Coll Mech Engn, Chongqing 400054, Peoples R China
[2] Nagoya Univ, Dept Mech Syst Engn, Tokai Natl Higher Educ & Res, Nagoya 4648603, Japan
[3] Jiangsu Univ Sci & Technol, Sch Energy & Power, Zhenjiang 212100, Peoples R China
[4] Yamaguchi Univ, Fac Engn, Yamaguchi 7558611, Japan
来源
关键词
Kolmogorov-Arnold Networks; Electrohydrodynamic pumps; Neural network;
D O I
10.1016/j.birob.2024.100184
中图分类号
TP24 [机器人技术];
学科分类号
080202 ; 1405 ;
摘要
We present a novel approach to predicting the pressure and flow rate of flexible electrohydrodynamic pumps using the Kolmogorov-Arnold Network. Inspired by the Kolmogorov-Arnold representation theorem, KAN replaces fixed activation functions with learnable spline-based activation functions, enabling it to approximate complex nonlinear functions more effectively than traditional models like Multi-Layer Perceptron and Random Forest. We evaluated KAN on a dataset of flexible EHD pump parameters and compared its performance against RF, and MLP models. KAN achieved superior predictive accuracy, with Mean Squared Errors of 12.186 and 0.012 for pressure and flow rate predictions, respectively. The symbolic formulas extracted from KAN provided insights into the nonlinear relationships between input parameters and pump performance. These findings demonstrate that KAN offers exceptional accuracy and interpretability, making it a promising alternative for predictive modeling in electrohydrodynamic pumping. (c) 2024 The Author(s). Published by Elsevier B.V. on behalf of Shandong University. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
引用
收藏
页数:3
相关论文
共 50 条
  • [31] Adaptive Training of Grid-Dependent Physics-Informed Kolmogorov-Arnold Networks
    Rigas, Spyros
    Papachristou, Michalis
    Papadopoulos, Theofilos
    Anagnostopoulos, Fotios
    Alexandridis, Georgios
    IEEE ACCESS, 2024, 12 : 176982 - 176998
  • [32] Scattering-based structural inversion of soft materials via Kolmogorov-Arnold networks
    Tung, Chi-Huan
    Ding, Lijie
    Chang, Ming-Ching
    Huang, Guan-Rong
    Porcar, Lionel
    Wang, Yangyang
    Carrillo, Jan-Michael Y.
    Sumpter, Bobby G.
    Shinohara, Yuya
    Do, Changwoo
    Chen, Wei-Ren
    JOURNAL OF CHEMICAL PHYSICS, 2025, 162 (07):
  • [33] Kolmogorov-Arnold networks guided whale optimization algorithm for feature selection in medical datasets
    Zheng, Boli
    Chen, Yi
    Wang, Chaofan
    Heidari, Ali Asghar
    Liu, Lei
    Chen, Huiling
    Liang, Guoxi
    JOURNAL OF BIG DATA, 2025, 12 (01)
  • [34] KT-Deblur: Kolmogorov-Arnold and Transformer Networks for Remote Sensing Image Deblurring
    Zhu, Baoyu
    Li, Zekun
    Lv, Qunbo
    Tan, Zheng
    Zhang, Kai
    REMOTE SENSING, 2025, 17 (05)
  • [35] Ensemble learning driven Kolmogorov-Arnold Networks-based Lung Cancer classification
    Sait, Abdul Rahaman Wahab
    AlBalawi, Eid
    Nagaraj, Ramprasad
    PLOS ONE, 2024, 19 (12):
  • [36] Exploring the Limitations of Kolmogorov-Arnold Networks in Classification: Insights to Software Training and Hardware Implementation
    Van Duy Trani
    Tran Xuan Hieu Le
    Thi Diem Tran
    Hoai Luan Pham
    Vu Trung Duong Le
    Tuan Hai Vu
    Van Tinh Nguyen
    Nakashima, Yasuhiko
    2024 TWELFTH INTERNATIONAL SYMPOSIUM ON COMPUTING AND NETWORKING WORKSHOPS, CANDARW 2024, 2024, : 110 - 116
  • [37] Smart home energy prediction framework using temporal Kolmogorov-Arnold transformer
    Lu, Yao
    Vijayananth, Vishalini
    Perumal, Thinagaran
    ENERGY AND BUILDINGS, 2025, 335
  • [38] A Novel Interpretable Short-Term Load Forecasting Method Based on Kolmogorov-Arnold Networks
    Jiang, Bozhen
    Wang, Yidi
    Wang, Qin
    Geng, Hua
    IEEE TRANSACTIONS ON POWER SYSTEMS, 2025, 40 (01) : 1180 - 1183
  • [39] The Importance of Weather Factors in the Resilience of Airport Flight Operations Based on Kolmogorov-Arnold Networks (KANs)
    Song, Mingyang
    Wang, Jianjun
    Li, Rui
    APPLIED SCIENCES-BASEL, 2024, 14 (19):
  • [40] The Application of the Novel Kolmogorov-Arnold Networks for Predicting the Fundamental Period of RC Infilled Frame Structures
    Lin, Shan
    Zhao, Kaiyang
    Guo, Hongwei
    Hu, Quanke
    Cao, Xitailang
    Zheng, Hong
    INTERNATIONAL JOURNAL OF MECHANICAL SYSTEM DYNAMICS, 2025,