Predictive modeling of flexible EHD pumps using Kolmogorov-Arnold Networks

被引:14
|
作者
Peng, Yanhong [1 ]
Wang, Yuxin [2 ,3 ]
Hu, Fangchao [1 ]
He, Miao [1 ]
Mao, Zebing [4 ]
Huang, Xia [1 ]
Ding, Jun [1 ]
机构
[1] Chongqing Univ Technol, Coll Mech Engn, Chongqing 400054, Peoples R China
[2] Nagoya Univ, Dept Mech Syst Engn, Tokai Natl Higher Educ & Res, Nagoya 4648603, Japan
[3] Jiangsu Univ Sci & Technol, Sch Energy & Power, Zhenjiang 212100, Peoples R China
[4] Yamaguchi Univ, Fac Engn, Yamaguchi 7558611, Japan
来源
关键词
Kolmogorov-Arnold Networks; Electrohydrodynamic pumps; Neural network;
D O I
10.1016/j.birob.2024.100184
中图分类号
TP24 [机器人技术];
学科分类号
080202 ; 1405 ;
摘要
We present a novel approach to predicting the pressure and flow rate of flexible electrohydrodynamic pumps using the Kolmogorov-Arnold Network. Inspired by the Kolmogorov-Arnold representation theorem, KAN replaces fixed activation functions with learnable spline-based activation functions, enabling it to approximate complex nonlinear functions more effectively than traditional models like Multi-Layer Perceptron and Random Forest. We evaluated KAN on a dataset of flexible EHD pump parameters and compared its performance against RF, and MLP models. KAN achieved superior predictive accuracy, with Mean Squared Errors of 12.186 and 0.012 for pressure and flow rate predictions, respectively. The symbolic formulas extracted from KAN provided insights into the nonlinear relationships between input parameters and pump performance. These findings demonstrate that KAN offers exceptional accuracy and interpretability, making it a promising alternative for predictive modeling in electrohydrodynamic pumping. (c) 2024 The Author(s). Published by Elsevier B.V. on behalf of Shandong University. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
引用
收藏
页数:3
相关论文
共 50 条
  • [41] MOF-KAN: Kolmogorov-Arnold Networks for Digital Discovery of Metal-Organic Frameworks
    Wu, Xiaoyu
    Song, Xianyu
    Yue, Yifei
    Zheng, Rui
    Jiang, Jianwen
    JOURNAL OF PHYSICAL CHEMISTRY LETTERS, 2025, 16 (10): : 2452 - 2459
  • [42] KOLMOGOROV-ARNOLD NEURAL NETWORKS TECHNIQUE FOR THE STATE OF CHARGE ESTIMATION FOR LI-ION BATTERIES
    Dao, M. H.
    Liu, F.
    Sidorov, D. N.
    BULLETIN OF THE SOUTH URAL STATE UNIVERSITY SERIES-MATHEMATICAL MODELLING PROGRAMMING & COMPUTER SOFTWARE, 2024, 17 (04): : 22 - 31
  • [43] Permuted Temporal Kolmogorov-Arnold Networks for Stock Price Forecasting Using Generative Aspect-Based Sentiment Analysis
    Haryono, Agus Tri
    Sarno, Riyanarto
    Anggraini, Ratih Nur Esti
    Sungkono, Kelly Rossa
    IEEE ACCESS, 2024, 12 : 178672 - 178689
  • [44] Accurately Models the Relationship Between Physical Response and Structure Using Kolmogorov-Arnold Network
    Wang, Yang
    Zhu, Changliang
    Zhang, Shuzhe
    Xiang, Changsheng
    Gao, Zhibin
    Zhu, Guimei
    Sun, Jun
    Ding, Xiangdong
    Li, Baowen
    Shen, Xiangying
    ADVANCED SCIENCE, 2025,
  • [45] Co-design for Kolmogorov-Arnold networks to unlock the full potential of optical intelligent accelerators
    Du, Shiyin
    Hao, Ouyang
    Tao, Zilong
    Yan, Qiuquan
    Hao, Hao
    Zhang, Jun
    Tang, Yuhua
    Jiang, Tian
    OPTICS LETTERS, 2025, 50 (05) : 1695 - 1698
  • [46] Kolmogorov-Arnold-Informed neural network: A physics-informed deep learning framework for solving forward and inverse problems based on Kolmogorov-Arnold Networks
    Wang, Yizheng
    Sun, Jia
    Bai, Jinshuai
    Anitescu, Cosmin
    Eshaghi, Mohammad Sadegh
    Zhuang, Xiaoying
    Rabczuk, Timon
    Liu, Yinghua
    COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2025, 433
  • [47] Kolmogorov-Arnold networks autoencoder enhanced thermal wave radar for internal defect detection in carbon steel
    Liang, Xinlong
    Wang, Binrui
    Lei, Chunming
    Zhou, Kun
    Chen, Xianlei
    OPTICS AND LASERS IN ENGINEERING, 2025, 187
  • [48] Comparison of Kolmogorov-Arnold Networks and Multi-Layer Perceptron for modelling and optimisation analysis of energy systems
    Ansar, Talha
    Ashraf, Waqar Muhammad
    ENERGY AND AI, 2025, 20
  • [49] Deep insight: an efficient hybrid model for oil well production forecasting using spatio-temporal convolutional networks and Kolmogorov-Arnold networks
    Hu, Yandong
    Xin, Xiankang
    Yu, Gaoming
    Deng, Wu
    SCIENTIFIC REPORTS, 2025, 15 (01):
  • [50] Deep reinforcement learning with dual-Q and Kolmogorov-Arnold Networks for computation offloading in Industrial IoT
    Wu, Jinru
    Du, Ruizhong
    Wang, Ziyuan
    COMPUTER NETWORKS, 2025, 257