Predictive modeling of flexible EHD pumps using Kolmogorov-Arnold Networks

被引:14
|
作者
Peng, Yanhong [1 ]
Wang, Yuxin [2 ,3 ]
Hu, Fangchao [1 ]
He, Miao [1 ]
Mao, Zebing [4 ]
Huang, Xia [1 ]
Ding, Jun [1 ]
机构
[1] Chongqing Univ Technol, Coll Mech Engn, Chongqing 400054, Peoples R China
[2] Nagoya Univ, Dept Mech Syst Engn, Tokai Natl Higher Educ & Res, Nagoya 4648603, Japan
[3] Jiangsu Univ Sci & Technol, Sch Energy & Power, Zhenjiang 212100, Peoples R China
[4] Yamaguchi Univ, Fac Engn, Yamaguchi 7558611, Japan
来源
关键词
Kolmogorov-Arnold Networks; Electrohydrodynamic pumps; Neural network;
D O I
10.1016/j.birob.2024.100184
中图分类号
TP24 [机器人技术];
学科分类号
080202 ; 1405 ;
摘要
We present a novel approach to predicting the pressure and flow rate of flexible electrohydrodynamic pumps using the Kolmogorov-Arnold Network. Inspired by the Kolmogorov-Arnold representation theorem, KAN replaces fixed activation functions with learnable spline-based activation functions, enabling it to approximate complex nonlinear functions more effectively than traditional models like Multi-Layer Perceptron and Random Forest. We evaluated KAN on a dataset of flexible EHD pump parameters and compared its performance against RF, and MLP models. KAN achieved superior predictive accuracy, with Mean Squared Errors of 12.186 and 0.012 for pressure and flow rate predictions, respectively. The symbolic formulas extracted from KAN provided insights into the nonlinear relationships between input parameters and pump performance. These findings demonstrate that KAN offers exceptional accuracy and interpretability, making it a promising alternative for predictive modeling in electrohydrodynamic pumping. (c) 2024 The Author(s). Published by Elsevier B.V. on behalf of Shandong University. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
引用
收藏
页数:3
相关论文
共 50 条
  • [11] How Resilient Are Kolmogorov-Arnold Networks in Classification Tasks? A Robustness Investigation
    Ibrahum, Ahmed Dawod Mohammed
    Shang, Zhengyu
    Hong, Jang-Eui
    APPLIED SCIENCES-BASEL, 2024, 14 (22):
  • [12] Physics-Informed Kolmogorov-Arnold Networks for Power System Dynamics
    Shuai, Hang
    Li, Fangxing
    IEEE OPEN ACCESS JOURNAL OF POWER AND ENERGY, 2025, 12 : 46 - 58
  • [13] Kolmogorov-Arnold neural networks for high-entropy alloys design
    Bandyopadhyay, Yagnik
    Avlani, Harshil
    Zhuang, Houlong L.
    MODELLING AND SIMULATION IN MATERIALS SCIENCE AND ENGINEERING, 2025, 33 (03)
  • [14] Interpretable State Estimation in Power Systems Based on the Kolmogorov-Arnold Networks
    Wang, Shuaibo
    Luo, Wenhao
    Yin, Sixing
    Zhang, Jie
    Liang, Zhuohang
    Zhu, Yihua
    Li, Shufang
    ELECTRONICS, 2025, 14 (02):
  • [15] HyperKAN: Kolmogorov-Arnold Networks Make Hyperspectral Image Classifiers Smarter
    Firsov, Nikita
    Myasnikov, Evgeny
    Lobanov, Valeriy
    Khabibullin, Roman
    Kazanskiy, Nikolay
    Khonina, Svetlana
    Butt, Muhammad A.
    Nikonorov, Artem
    SENSORS, 2024, 24 (23)
  • [16] fKAN: Fractional Kolmogorov-Arnold Networks with trainable Jacobi basis functions
    Aghaei, Alireza Afzal
    NEUROCOMPUTING, 2025, 623
  • [17] fKAN: Fractional Kolmogorov-Arnold Networks with trainable Jacobi basis functions
    Aghaei, Alireza Afzal
    arXiv,
  • [18] The role of Guru investor in Bitcoin: Evidence from Kolmogorov-Arnold Networks
    Shen, Dehua
    Wu, Yize
    RESEARCH IN INTERNATIONAL BUSINESS AND FINANCE, 2025, 75
  • [19] Predicting Chlorophyll-a Concentrations in the World's Largest Lakes Using Kolmogorov-Arnold Networks
    Saravani, Mohammad Javad
    Noori, Roohollah
    Jun, Changhyun
    Kim, Dongkyun
    Bateni, Sayed M.
    Kianmehr, Peiman
    Woolway, Richard Iestyn
    ENVIRONMENTAL SCIENCE & TECHNOLOGY, 2025, 59 (03) : 1801 - 1810
  • [20] Kolmogorov-Arnold networks for algorithm design in battery energy storage system applications
    Zequera, Rolando Antonio Gilbert
    Rassolkin, Anton
    Vaimann, Toomas
    Kallaste, Ants
    ENERGY REPORTS, 2025, 13 : 2664 - 2677