Predicting Chlorophyll-a Concentrations in the World's Largest Lakes Using Kolmogorov-Arnold Networks

被引:3
|
作者
Saravani, Mohammad Javad [1 ]
Noori, Roohollah [1 ]
Jun, Changhyun [2 ]
Kim, Dongkyun [3 ]
Bateni, Sayed M. [4 ,5 ,6 ]
Kianmehr, Peiman [7 ]
Woolway, Richard Iestyn [8 ]
机构
[1] Univ Tehran, Grad Fac Environm, Tehran 1417853111, Iran
[2] Korea Univ, Coll Engn, Sch Civil Environm & Architectural Engn, Seoul 02841, South Korea
[3] Hongik Univ, Dept Civil & Environm Engn, Seoul 2639, South Korea
[4] Univ Hawaii Manoa, Dept Civil Environm & Construct Engn, Honolulu, HI 96822 USA
[5] Univ Hawaii Manoa, Water Resources Res Ctr, Honolulu, HI 96822 USA
[6] Univ South Africa, Coll Grad Studies, UNISA Africa Chair Nanosci & Nanotechnol, UNESCO, ZA-392 Pretoria, South Africa
[7] Amer Univ Dubai, Dept Civil Engn, Dubai 28282, U Arab Emirates
[8] Bangor Univ, Sch Ocean Sci, Anglesey LL59 5AB, Wales
基金
新加坡国家研究基金会;
关键词
Kolmogorov-Arnold networks; Eutrophication; Chlorophyll-<italic>a</italic>; Pollution; WATER-QUALITY MODEL; FRESH-WATER; EUTROPHICATION; REPRESENTATION; RESERVOIRS; CLIMATE; BLOOMS;
D O I
10.1021/acs.est.4c11113
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Accurate prediction of chlorophyll-a (Chl-a) concentrations, a key indicator of eutrophication, is essential for the sustainable management of lake ecosystems. This study evaluated the performance of Kolmogorov-Arnold Networks (KANs) along with three neural network models (MLP-NN, LSTM, and GRU) and three traditional machine learning tools (RF, SVR, and GPR) for predicting time-series Chl-a concentrations in large lakes. Monthly remote-sensed Chl-a data derived from Aqua-MODIS spanning September 2002 to April 2024 were used. The models were evaluated based on their forecasting capabilities from March 2024 to August 2024. KAN consistently outperformed others in both test and forecast (unseen data) phases and demonstrated superior accuracy in capturing trends, dynamic fluctuations, and peak Chl-a concentrations. Statistical evaluation using ranking metrics and critical difference diagrams confirmed KAN's robust performance across diverse study sites, further emphasizing its predictive power. Our findings suggest that the KAN, which leverages the KA representation theorem, offers improved handling of nonlinearity and long-term dependencies in time-series Chl-a data, outperforming neural network models grounded in the universal approximation theorem and traditional machine learning algorithms.
引用
收藏
页码:1801 / 1810
页数:10
相关论文
共 23 条
  • [1] SineKAN: Kolmogorov-Arnold Networks using sinusoidal activation functions
    Reinhardt, Eric
    Ramakrishnan, Dinesh
    Gleyzer, Sergei
    FRONTIERS IN ARTIFICIAL INTELLIGENCE, 2025, 7
  • [2] Solution of an Inverse Problem of Optical Spectroscopy Using Kolmogorov-Arnold Networks
    Kupriyanov, G.
    Isaev, I.
    Laptinskiy, K.
    Dolenko, T.
    Dolenko, S.
    OPTICAL MEMORY AND NEURAL NETWORKS, 2024, 33 (SUPPL3) : S475 - S482
  • [3] Predicting the uplift capacity of circular anchors in frictional-cohesive soils using Kolmogorov-Arnold networks
    Tran Vu-Hoang
    Tan Nguyen
    Jim Shiau
    Hung-Thinh Pham-Tran
    Trung Nguyen-Thoi
    Scientific Reports, 15 (1)
  • [4] Predictive modeling of flexible EHD pumps using Kolmogorov-Arnold Networks
    Peng, Yanhong
    Wang, Yuxin
    Hu, Fangchao
    He, Miao
    Mao, Zebing
    Huang, Xia
    Ding, Jun
    BIOMIMETIC INTELLIGENCE AND ROBOTICS, 2024, 4 (04):
  • [5] Battery state of charge estimation for electric vehicle using Kolmogorov-Arnold networks
    Sulaiman, Mohd Herwan
    Mustaffa, Zuriani
    Mohamed, Amir Izzani
    Samsudin, Ahmad Salihin
    Rashid, Muhammad Ikram Mohd
    ENERGY, 2024, 311
  • [6] Detection of Bus Driver Mobile Phone Usage Using Kolmogorov-Arnold Networks
    Hollosi, Janos
    Ballagi, Aron
    Kovacs, Gabor
    Fischer, Szabolcs
    Nagy, Viktor
    COMPUTERS, 2024, 13 (09)
  • [7] Error bounds for deep ReLU networks using the Kolmogorov-Arnold superposition theorem
    Montanelli, Hadrien
    Yang, Haizhao
    NEURAL NETWORKS, 2020, 129 : 1 - 6
  • [8] The Application of the Novel Kolmogorov-Arnold Networks for Predicting the Fundamental Period of RC Infilled Frame Structures
    Lin, Shan
    Zhao, Kaiyang
    Guo, Hongwei
    Hu, Quanke
    Cao, Xitailang
    Zheng, Hong
    INTERNATIONAL JOURNAL OF MECHANICAL SYSTEM DYNAMICS, 2025,
  • [9] Advancing Real-Estate Forecasting: A Novel Approach Using Kolmogorov-Arnold Networks
    Viktoratos, Iosif
    Tsadiras, Athanasios
    ALGORITHMS, 2025, 18 (02)
  • [10] Multilayer perceptron integrated with Kolmogorov-Arnold networks for predicting the water level in the Gezhouba Sanjiang downstream approach channel
    Liu, Zhan
    Hu, Yaan
    Li, Zhonghua
    JOURNAL OF HYDROINFORMATICS, 2025, 27 (03) : 529 - 559