Battery state of charge estimation for electric vehicle using Kolmogorov-Arnold networks

被引:4
|
作者
Sulaiman, Mohd Herwan [1 ]
Mustaffa, Zuriani [2 ]
Mohamed, Amir Izzani [1 ]
Samsudin, Ahmad Salihin [3 ]
Rashid, Muhammad Ikram Mohd [1 ]
机构
[1] Univ Malaysia Pahang Al Sultan Abdullah UMPSA, Fac Elect & Elect Engn Technol, Pekan 26600, Pahang, Malaysia
[2] Univ Malaysia Pahang Al Sultan Abdullah UMPSA, Fac Comp, Pekan 26600, Pahang, Malaysia
[3] Univ Malaysia Pahang Al Sultan Abdullah UMPSA, Fac Ind Sci & Technol, Gambang 26300, Pahang, Malaysia
关键词
State of charge (SoC); Electric vehicles (EV); Kolmogorov-Arnold networks (KAN); Artificial neural networks (ANN); Hybrid metaheuristic-deep learning; Battery management; REGRESSION;
D O I
10.1016/j.energy.2024.133417
中图分类号
O414.1 [热力学];
学科分类号
摘要
Accurate estimation of the state of charge (SoC) in electric vehicle (EV) batteries is essential for effective battery management and optimal performance. This study investigates the application of Kolmogorov-Arnold Networks (KAN) for SoC estimation, comparing its performance against Artificial Neural Networks (ANN) and a hybrid Barnacles Mating Optimizer-deep learning model (BMO-DL). The dataset, derived from simulations involving a lithium polymer cell model (ePLB C020) in an electric car similar to Nissan Leaf EV, encompasses 68,741 instances, divided into training and testing sets. Three KAN models were developed and evaluated based on root mean square error (RMSE), mean absolute error (MAE), maximum error (MAX), and coefficient of determination (R2). Residual analysis indicates that KAN-Model 1 performs the best, with residuals closely clustered around zero and no significant patterns, suggesting reliable and unbiased predictions. KAN-Model 2 also performs well but exhibits some nonlinear trends in the residuals. ANN and BMO-DL models show larger deviations and less consistent performance. These findings highlight the potential of KAN for enhancing SoC estimation accuracy in EV applications.
引用
收藏
页数:10
相关论文
共 50 条
  • [1] KOLMOGOROV-ARNOLD NEURAL NETWORKS TECHNIQUE FOR THE STATE OF CHARGE ESTIMATION FOR LI-ION BATTERIES
    Dao, M. H.
    Liu, F.
    Sidorov, D. N.
    BULLETIN OF THE SOUTH URAL STATE UNIVERSITY SERIES-MATHEMATICAL MODELLING PROGRAMMING & COMPUTER SOFTWARE, 2024, 17 (04): : 22 - 31
  • [2] Interpretable State Estimation in Power Systems Based on the Kolmogorov-Arnold Networks
    Wang, Shuaibo
    Luo, Wenhao
    Yin, Sixing
    Zhang, Jie
    Liang, Zhuohang
    Zhu, Yihua
    Li, Shufang
    ELECTRONICS, 2025, 14 (02):
  • [3] Kolmogorov-Arnold networks for algorithm design in battery energy storage system applications
    Zequera, Rolando Antonio Gilbert
    Rassolkin, Anton
    Vaimann, Toomas
    Kallaste, Ants
    ENERGY REPORTS, 2025, 13 : 2664 - 2677
  • [4] SineKAN: Kolmogorov-Arnold Networks using sinusoidal activation functions
    Reinhardt, Eric
    Ramakrishnan, Dinesh
    Gleyzer, Sergei
    FRONTIERS IN ARTIFICIAL INTELLIGENCE, 2025, 7
  • [5] Electric vehicle battery pack state of charge estimation using parallel artificial neural networks
    Manoharan, Aaruththiran
    Sooriamoorthy, Denesh
    Begam, K. M.
    Aparow, Vimal Rau
    JOURNAL OF ENERGY STORAGE, 2023, 72
  • [6] Solution of an Inverse Problem of Optical Spectroscopy Using Kolmogorov-Arnold Networks
    Kupriyanov, G.
    Isaev, I.
    Laptinskiy, K.
    Dolenko, T.
    Dolenko, S.
    OPTICAL MEMORY AND NEURAL NETWORKS, 2024, 33 (SUPPL3) : S475 - S482
  • [7] Predictive modeling of flexible EHD pumps using Kolmogorov-Arnold Networks
    Peng, Yanhong
    Wang, Yuxin
    Hu, Fangchao
    He, Miao
    Mao, Zebing
    Huang, Xia
    Ding, Jun
    BIOMIMETIC INTELLIGENCE AND ROBOTICS, 2024, 4 (04):
  • [8] Kolmogorov-Arnold networks in nuclear binding energy prediction
    Liu, Hao
    Lei, Jin
    Ren, Zhongzhou
    PHYSICAL REVIEW C, 2025, 111 (02)
  • [9] State of Health Estimation of Li-Ion Battery via Incremental Capacity Analysis and Internal Resistance Identification Based on Kolmogorov-Arnold Networks
    Peng, Jun
    Zhao, Xuan
    Ma, Jian
    Meng, Dean
    Jia, Shuhai
    Zhang, Kai
    Gu, Chenyan
    Ding, Wenhao
    BATTERIES-BASEL, 2024, 10 (09):
  • [10] Detection of Bus Driver Mobile Phone Usage Using Kolmogorov-Arnold Networks
    Hollosi, Janos
    Ballagi, Aron
    Kovacs, Gabor
    Fischer, Szabolcs
    Nagy, Viktor
    COMPUTERS, 2024, 13 (09)