Battery state of charge estimation for electric vehicle using Kolmogorov-Arnold networks

被引:4
|
作者
Sulaiman, Mohd Herwan [1 ]
Mustaffa, Zuriani [2 ]
Mohamed, Amir Izzani [1 ]
Samsudin, Ahmad Salihin [3 ]
Rashid, Muhammad Ikram Mohd [1 ]
机构
[1] Univ Malaysia Pahang Al Sultan Abdullah UMPSA, Fac Elect & Elect Engn Technol, Pekan 26600, Pahang, Malaysia
[2] Univ Malaysia Pahang Al Sultan Abdullah UMPSA, Fac Comp, Pekan 26600, Pahang, Malaysia
[3] Univ Malaysia Pahang Al Sultan Abdullah UMPSA, Fac Ind Sci & Technol, Gambang 26300, Pahang, Malaysia
关键词
State of charge (SoC); Electric vehicles (EV); Kolmogorov-Arnold networks (KAN); Artificial neural networks (ANN); Hybrid metaheuristic-deep learning; Battery management; REGRESSION;
D O I
10.1016/j.energy.2024.133417
中图分类号
O414.1 [热力学];
学科分类号
摘要
Accurate estimation of the state of charge (SoC) in electric vehicle (EV) batteries is essential for effective battery management and optimal performance. This study investigates the application of Kolmogorov-Arnold Networks (KAN) for SoC estimation, comparing its performance against Artificial Neural Networks (ANN) and a hybrid Barnacles Mating Optimizer-deep learning model (BMO-DL). The dataset, derived from simulations involving a lithium polymer cell model (ePLB C020) in an electric car similar to Nissan Leaf EV, encompasses 68,741 instances, divided into training and testing sets. Three KAN models were developed and evaluated based on root mean square error (RMSE), mean absolute error (MAE), maximum error (MAX), and coefficient of determination (R2). Residual analysis indicates that KAN-Model 1 performs the best, with residuals closely clustered around zero and no significant patterns, suggesting reliable and unbiased predictions. KAN-Model 2 also performs well but exhibits some nonlinear trends in the residuals. ANN and BMO-DL models show larger deviations and less consistent performance. These findings highlight the potential of KAN for enhancing SoC estimation accuracy in EV applications.
引用
收藏
页数:10
相关论文
共 50 条
  • [21] Using Dynamic Neural Networks for Battery State of Charge Estimation in Electric Vehicles
    Jimenez-Bermejo, David
    Fraile-Ardanuy, Jesus
    Castano-Solis, Sandra
    Merino, Julia
    Alvaro-Hermana, Roberto
    9TH INTERNATIONAL CONFERENCE ON AMBIENT SYSTEMS, NETWORKS AND TECHNOLOGIES (ANT 2018) / THE 8TH INTERNATIONAL CONFERENCE ON SUSTAINABLE ENERGY INFORMATION TECHNOLOGY (SEIT-2018) / AFFILIATED WORKSHOPS, 2018, 130 : 533 - 540
  • [22] Electric Vehicle Battery State of Charge and Charging Station Distance Estimation Using IoT
    Raghavendran, C. R.
    Kaliappan, E.
    Kandasamy, Prabaakaran
    RECENT ADVANCES IN ELECTRICAL & ELECTRONIC ENGINEERING, 2025, 18 (03) : 346 - 358
  • [23] Advancing Real-Estate Forecasting: A Novel Approach Using Kolmogorov-Arnold Networks
    Viktoratos, Iosif
    Tsadiras, Athanasios
    ALGORITHMS, 2025, 18 (02)
  • [24] State of charge (SOC) estimation in electric vehicle (EV) battery management systems using ensemble methods and neural networks
    Ofoegbu, Edward Ositadinma
    JOURNAL OF ENERGY STORAGE, 2025, 114
  • [25] A Review on the Battery State of Charge Estimation Methods for Electric Vehicle Battery Management Systems
    Aslan, Eyyup
    Yasa, Yusuf
    2019 11TH INTERNATIONAL CONFERENCE ON ELECTRICAL AND ELECTRONICS ENGINEERING (ELECO 2019), 2019, : 281 - 285
  • [26] FloodKAN: Integrating Kolmogorov-Arnold Networks for Efficient Flood Extent Extraction
    Wang, Cong
    Zhang, Xiaohan
    Liu, Liwei
    REMOTE SENSING, 2025, 17 (04)
  • [27] How Resilient Are Kolmogorov-Arnold Networks in Classification Tasks? A Robustness Investigation
    Ibrahum, Ahmed Dawod Mohammed
    Shang, Zhengyu
    Hong, Jang-Eui
    APPLIED SCIENCES-BASEL, 2024, 14 (22):
  • [28] Battery State of Charge Estimation Using Adaptive Extended Kalman Filter for Electric Vehicle application
    Shrivastava, Prashant
    Soon, Tey Kok
    Bin Idris, Mohd Yamani Idna
    Mekhilef, Saad
    2020 IEEE 9TH INTERNATIONAL POWER ELECTRONICS AND MOTION CONTROL CONFERENCE (IPEMC2020-ECCE ASIA), 2020, : 2202 - 2207
  • [29] Battery State-Of-Charge Estimation in Electric Vehicle Using Elman Neural Network Method
    Shi Qingsheng
    Zhang Chenghui
    Cui Naxin
    Zhang Xiaoping
    PROCEEDINGS OF THE 29TH CHINESE CONTROL CONFERENCE, 2010, : 5999 - 6003
  • [30] State of Charge Estimation of a Lithium-Ion Battery in an Electric Vehicle Using the XGBoost Method
    Fadlaoui, Elmahdi
    Masaif, Noureddine
    ADVANCES IN CONTROL POWER SYSTEMS AND EMERGING TECHNOLOGIES, VOL 2, ICESA 2023, 2024, : 91 - 97