Solution of an Inverse Problem of Optical Spectroscopy Using Kolmogorov-Arnold Networks

被引:0
|
作者
Kupriyanov, G. [1 ,2 ]
Isaev, I. [2 ,3 ]
Laptinskiy, K. [1 ,2 ]
Dolenko, T. [1 ,2 ]
Dolenko, S. [1 ,2 ]
机构
[1] Moscow State Univ, Phys Dept, Moscow 119991, Russia
[2] Moscow State Univ, Skobeltsyn Inst Nucl Phys, Moscow 119991, Russia
[3] Russian Acad Sci, Kotelnikov Inst Radioengn & Elect, Moscow 125009, Russia
基金
俄罗斯科学基金会;
关键词
Kolmogorov-Arnold networks; carbon nanosensors; inverse problems; fluorescence spectroscopy; CARBON DOTS;
D O I
10.3103/S1060992X24700747
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
Kolmogorov-Arnold Networks (KAN), introduced in May 2024, are a novel type of artificial neural networks, whose abilities and properties are now being actively investigated by the machine learning community. In this study, we test application of KAN to solve an inverse problem for development of multimodal carbon luminescent nanosensors of ions dissolved in water, including heavy metal cations. We compare the results of solving this problem with four various machine learning methods-random forest, gradient boosting over decision trees, multi-layer perceptron neural networks, and KAN. Advantages and disadvantages of KAN are discussed, and it is demonstrated that KAN has high chance to become one of the algorithms most recommended for use in solving highly non-linear regression problems with moderate number of input features.
引用
收藏
页码:S475 / S482
页数:8
相关论文
共 50 条
  • [1] SineKAN: Kolmogorov-Arnold Networks using sinusoidal activation functions
    Reinhardt, Eric
    Ramakrishnan, Dinesh
    Gleyzer, Sergei
    FRONTIERS IN ARTIFICIAL INTELLIGENCE, 2025, 7
  • [2] ON THE PROBLEM ASKING IF KOLMOGOROV-ARNOLD REPRESENTATION CAN BE SIMPLIFIED
    Akashi, Shigeo
    Iwata, Toyonari
    Tong, Yao
    JOURNAL OF NONLINEAR AND CONVEX ANALYSIS, 2024, 25 (07) : 1577 - 1582
  • [3] Predictive modeling of flexible EHD pumps using Kolmogorov-Arnold Networks
    Peng, Yanhong
    Wang, Yuxin
    Hu, Fangchao
    He, Miao
    Mao, Zebing
    Huang, Xia
    Ding, Jun
    BIOMIMETIC INTELLIGENCE AND ROBOTICS, 2024, 4 (04):
  • [4] Kolmogorov-Arnold networks in nuclear binding energy prediction
    Liu, Hao
    Lei, Jin
    Ren, Zhongzhou
    PHYSICAL REVIEW C, 2025, 111 (02)
  • [5] Battery state of charge estimation for electric vehicle using Kolmogorov-Arnold networks
    Sulaiman, Mohd Herwan
    Mustaffa, Zuriani
    Mohamed, Amir Izzani
    Samsudin, Ahmad Salihin
    Rashid, Muhammad Ikram Mohd
    ENERGY, 2024, 311
  • [6] Detection of Bus Driver Mobile Phone Usage Using Kolmogorov-Arnold Networks
    Hollosi, Janos
    Ballagi, Aron
    Kovacs, Gabor
    Fischer, Szabolcs
    Nagy, Viktor
    COMPUTERS, 2024, 13 (09)
  • [7] Error bounds for deep ReLU networks using the Kolmogorov-Arnold superposition theorem
    Montanelli, Hadrien
    Yang, Haizhao
    NEURAL NETWORKS, 2020, 129 : 1 - 6
  • [8] Kolmogorov-Arnold Networks for Semi-Supervised Impedance Inversion
    Liu, Mingming
    Bossmann, Florian
    Ma, Jianwei
    IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2025, 22
  • [9] An intrusion detection model based on Convolutional Kolmogorov-Arnold Networks
    Wang, Zhen
    Zainal, Anazida
    Siraj, Maheyzah Md
    Ghaleb, Fuad A.
    Hao, Xue
    Han, Shaoyong
    SCIENTIFIC REPORTS, 2025, 15 (01):
  • [10] Advancing Real-Estate Forecasting: A Novel Approach Using Kolmogorov-Arnold Networks
    Viktoratos, Iosif
    Tsadiras, Athanasios
    ALGORITHMS, 2025, 18 (02)