Solution of an Inverse Problem of Optical Spectroscopy Using Kolmogorov-Arnold Networks

被引:0
|
作者
Kupriyanov, G. [1 ,2 ]
Isaev, I. [2 ,3 ]
Laptinskiy, K. [1 ,2 ]
Dolenko, T. [1 ,2 ]
Dolenko, S. [1 ,2 ]
机构
[1] Moscow State Univ, Phys Dept, Moscow 119991, Russia
[2] Moscow State Univ, Skobeltsyn Inst Nucl Phys, Moscow 119991, Russia
[3] Russian Acad Sci, Kotelnikov Inst Radioengn & Elect, Moscow 125009, Russia
基金
俄罗斯科学基金会;
关键词
Kolmogorov-Arnold networks; carbon nanosensors; inverse problems; fluorescence spectroscopy; CARBON DOTS;
D O I
10.3103/S1060992X24700747
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
Kolmogorov-Arnold Networks (KAN), introduced in May 2024, are a novel type of artificial neural networks, whose abilities and properties are now being actively investigated by the machine learning community. In this study, we test application of KAN to solve an inverse problem for development of multimodal carbon luminescent nanosensors of ions dissolved in water, including heavy metal cations. We compare the results of solving this problem with four various machine learning methods-random forest, gradient boosting over decision trees, multi-layer perceptron neural networks, and KAN. Advantages and disadvantages of KAN are discussed, and it is demonstrated that KAN has high chance to become one of the algorithms most recommended for use in solving highly non-linear regression problems with moderate number of input features.
引用
收藏
页码:S475 / S482
页数:8
相关论文
共 50 条
  • [41] The Application of the Novel Kolmogorov-Arnold Networks for Predicting the Fundamental Period of RC Infilled Frame Structures
    Lin, Shan
    Zhao, Kaiyang
    Guo, Hongwei
    Hu, Quanke
    Cao, Xitailang
    Zheng, Hong
    INTERNATIONAL JOURNAL OF MECHANICAL SYSTEM DYNAMICS, 2025,
  • [42] MOF-KAN: Kolmogorov-Arnold Networks for Digital Discovery of Metal-Organic Frameworks
    Wu, Xiaoyu
    Song, Xianyu
    Yue, Yifei
    Zheng, Rui
    Jiang, Jianwen
    JOURNAL OF PHYSICAL CHEMISTRY LETTERS, 2025, 16 (10): : 2452 - 2459
  • [43] KOLMOGOROV-ARNOLD NEURAL NETWORKS TECHNIQUE FOR THE STATE OF CHARGE ESTIMATION FOR LI-ION BATTERIES
    Dao, M. H.
    Liu, F.
    Sidorov, D. N.
    BULLETIN OF THE SOUTH URAL STATE UNIVERSITY SERIES-MATHEMATICAL MODELLING PROGRAMMING & COMPUTER SOFTWARE, 2024, 17 (04): : 22 - 31
  • [44] Permuted Temporal Kolmogorov-Arnold Networks for Stock Price Forecasting Using Generative Aspect-Based Sentiment Analysis
    Haryono, Agus Tri
    Sarno, Riyanarto
    Anggraini, Ratih Nur Esti
    Sungkono, Kelly Rossa
    IEEE ACCESS, 2024, 12 : 178672 - 178689
  • [45] Accurately Models the Relationship Between Physical Response and Structure Using Kolmogorov-Arnold Network
    Wang, Yang
    Zhu, Changliang
    Zhang, Shuzhe
    Xiang, Changsheng
    Gao, Zhibin
    Zhu, Guimei
    Sun, Jun
    Ding, Xiangdong
    Li, Baowen
    Shen, Xiangying
    ADVANCED SCIENCE, 2025,
  • [46] Kolmogorov-Arnold networks autoencoder enhanced thermal wave radar for internal defect detection in carbon steel
    Liang, Xinlong
    Wang, Binrui
    Lei, Chunming
    Zhou, Kun
    Chen, Xianlei
    OPTICS AND LASERS IN ENGINEERING, 2025, 187
  • [47] Comparison of Kolmogorov-Arnold Networks and Multi-Layer Perceptron for modelling and optimisation analysis of energy systems
    Ansar, Talha
    Ashraf, Waqar Muhammad
    ENERGY AND AI, 2025, 20
  • [48] Deep insight: an efficient hybrid model for oil well production forecasting using spatio-temporal convolutional networks and Kolmogorov-Arnold networks
    Hu, Yandong
    Xin, Xiankang
    Yu, Gaoming
    Deng, Wu
    SCIENTIFIC REPORTS, 2025, 15 (01):
  • [49] Deep reinforcement learning with dual-Q and Kolmogorov-Arnold Networks for computation offloading in Industrial IoT
    Wu, Jinru
    Du, Ruizhong
    Wang, Ziyuan
    COMPUTER NETWORKS, 2025, 257
  • [50] Flood level prediction model based on Kolmogorov-Arnold Networks: an improved deep learning approachFlood level prediction model based on Kolmogorov-Arnold Networks: an improved deep learning approachJ. Zhao and M. F. Marsani
    Jingyi Zhao
    Muhammad Fadhil Marsani
    Theoretical and Applied Climatology, 2025, 156 (5)