Solution of an Inverse Problem of Optical Spectroscopy Using Kolmogorov-Arnold Networks

被引:0
|
作者
Kupriyanov, G. [1 ,2 ]
Isaev, I. [2 ,3 ]
Laptinskiy, K. [1 ,2 ]
Dolenko, T. [1 ,2 ]
Dolenko, S. [1 ,2 ]
机构
[1] Moscow State Univ, Phys Dept, Moscow 119991, Russia
[2] Moscow State Univ, Skobeltsyn Inst Nucl Phys, Moscow 119991, Russia
[3] Russian Acad Sci, Kotelnikov Inst Radioengn & Elect, Moscow 125009, Russia
基金
俄罗斯科学基金会;
关键词
Kolmogorov-Arnold networks; carbon nanosensors; inverse problems; fluorescence spectroscopy; CARBON DOTS;
D O I
10.3103/S1060992X24700747
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
Kolmogorov-Arnold Networks (KAN), introduced in May 2024, are a novel type of artificial neural networks, whose abilities and properties are now being actively investigated by the machine learning community. In this study, we test application of KAN to solve an inverse problem for development of multimodal carbon luminescent nanosensors of ions dissolved in water, including heavy metal cations. We compare the results of solving this problem with four various machine learning methods-random forest, gradient boosting over decision trees, multi-layer perceptron neural networks, and KAN. Advantages and disadvantages of KAN are discussed, and it is demonstrated that KAN has high chance to become one of the algorithms most recommended for use in solving highly non-linear regression problems with moderate number of input features.
引用
收藏
页码:S475 / S482
页数:8
相关论文
共 50 条
  • [21] The role of Guru investor in Bitcoin: Evidence from Kolmogorov-Arnold Networks
    Shen, Dehua
    Wu, Yize
    RESEARCH IN INTERNATIONAL BUSINESS AND FINANCE, 2025, 75
  • [22] Predicting Chlorophyll-a Concentrations in the World's Largest Lakes Using Kolmogorov-Arnold Networks
    Saravani, Mohammad Javad
    Noori, Roohollah
    Jun, Changhyun
    Kim, Dongkyun
    Bateni, Sayed M.
    Kianmehr, Peiman
    Woolway, Richard Iestyn
    ENVIRONMENTAL SCIENCE & TECHNOLOGY, 2025, 59 (03) : 1801 - 1810
  • [23] Kolmogorov-Arnold networks for algorithm design in battery energy storage system applications
    Zequera, Rolando Antonio Gilbert
    Rassolkin, Anton
    Vaimann, Toomas
    Kallaste, Ants
    ENERGY REPORTS, 2025, 13 : 2664 - 2677
  • [24] Enhancing Low-Light Images with Kolmogorov-Arnold Networks in Transformer Attention
    Brateanu, Alexandru
    Balmez, Raul
    Orhei, Ciprian
    Ancuti, Cosmin
    Ancuti, Codruta
    SENSORS, 2025, 25 (02)
  • [25] CKAN: Convolutional Kolmogorov-Arnold Networks Model for Intrusion Detection in IoT Environment
    Abd Elaziz, Mohamed
    Fares, Ibrahim Ahmed
    Aseeri, Ahmad O.
    IEEE ACCESS, 2024, 12 : 134837 - 134851
  • [26] Utilizing the Kolmogorov-Arnold Networks for chiller energy consumption prediction in commercial building
    Sulaiman, Mohd Herwan
    Mustaffa, Zuriani
    Saealal, Muhammad Salihin
    Saari, Mohd Mawardi
    Ahmad, Abu Zaharin
    JOURNAL OF BUILDING ENGINEERING, 2024, 96
  • [27] How to Learn More? Exploring Kolmogorov-Arnold Networks for Hyperspectral Image Classification
    Jamali, Ali
    Roy, Swalpa Kumar
    Hong, Danfeng
    Lu, Bing
    Ghamisi, Pedram
    REMOTE SENSING, 2024, 16 (21)
  • [28] Simulating fish autonomous swimming behaviours using deep reinforcement learning based on Kolmogorov-Arnold Networks
    Li, Tao
    Zhang, Chunze
    Zhang, Guibin
    Zhou, Qin
    Hou, Ji
    Diao, Wei
    Meng, Wanwan
    Zhang, Xujin
    BIOINSPIRATION & BIOMIMETICS, 2025, 20 (02)
  • [29] Predicting the uplift capacity of circular anchors in frictional-cohesive soils using Kolmogorov-Arnold networks
    Tran Vu-Hoang
    Tan Nguyen
    Jim Shiau
    Hung-Thinh Pham-Tran
    Trung Nguyen-Thoi
    Scientific Reports, 15 (1)
  • [30] Secure IoT sensor networks through advanced anomaly detection with Kolmogorov-Arnold Networks (KANs)
    Mishra, Shreshtha
    Jain, Usha
    MICROSYSTEM TECHNOLOGIES-MICRO-AND NANOSYSTEMS-INFORMATION STORAGE AND PROCESSING SYSTEMS, 2025,