Error bounds for deep ReLU networks using the Kolmogorov-Arnold superposition theorem

被引:50
|
作者
Montanelli, Hadrien [1 ]
Yang, Haizhao [2 ]
机构
[1] Columbia Univ, Dept Appl Phys & Appl Math, New York, NY 10027 USA
[2] Natl Univ Singapore, Dept Math, Singapore, Singapore
关键词
Deep ReLU networks; Curse of dimensionality; Approximation theory; Kolmogorov-Arnold superposition theorem; NUMERICAL IMPLEMENTATION; REPRESENTATION; VARIABLES;
D O I
10.1016/j.neunet.2019.12.013
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
We prove a theorem concerning the approximation of multivariate functions by deep ReLU networks, for which the curse of the dimensionality is lessened. Our theorem is based on a constructive proof of the Kolmogorov-Arnold superposition theorem, and on a subset of multivariate continuous functions whose outer superposition functions can be efficiently approximated by deep ReLU networks. (C) 2019 Published by Elsevier Ltd.
引用
收藏
页码:1 / 6
页数:6
相关论文
共 50 条
  • [1] The Kolmogorov-Arnold representation theorem revisited
    Schmidt-Hieber, Johannes
    NEURAL NETWORKS, 2021, 137 : 119 - 126
  • [2] Error bounds for approximations with deep ReLU networks
    Yarotsky, Dmitry
    NEURAL NETWORKS, 2017, 94 : 103 - 114
  • [3] Application of ε-entropy theory to Kolmogorov-Arnold representation theorem
    Akashi, S
    REPORTS ON MATHEMATICAL PHYSICS, 2001, 48 (1-2) : 19 - 26
  • [4] SineKAN: Kolmogorov-Arnold Networks using sinusoidal activation functions
    Reinhardt, Eric
    Ramakrishnan, Dinesh
    Gleyzer, Sergei
    FRONTIERS IN ARTIFICIAL INTELLIGENCE, 2025, 7
  • [5] New Error Bounds for Deep ReLU Networks Using Sparse Grids
    Montanelli, Hadrien
    Du, Qiang
    SIAM JOURNAL ON MATHEMATICS OF DATA SCIENCE, 2019, 1 (01): : 78 - 92
  • [6] Solution of an Inverse Problem of Optical Spectroscopy Using Kolmogorov-Arnold Networks
    Kupriyanov, G.
    Isaev, I.
    Laptinskiy, K.
    Dolenko, T.
    Dolenko, S.
    OPTICAL MEMORY AND NEURAL NETWORKS, 2024, 33 (SUPPL3) : S475 - S482
  • [7] Predictive modeling of flexible EHD pumps using Kolmogorov-Arnold Networks
    Peng, Yanhong
    Wang, Yuxin
    Hu, Fangchao
    He, Miao
    Mao, Zebing
    Huang, Xia
    Ding, Jun
    BIOMIMETIC INTELLIGENCE AND ROBOTICS, 2024, 4 (04):
  • [8] Kolmogorov-Arnold networks in nuclear binding energy prediction
    Liu, Hao
    Lei, Jin
    Ren, Zhongzhou
    PHYSICAL REVIEW C, 2025, 111 (02)
  • [9] Simulating fish autonomous swimming behaviours using deep reinforcement learning based on Kolmogorov-Arnold Networks
    Li, Tao
    Zhang, Chunze
    Zhang, Guibin
    Zhou, Qin
    Hou, Ji
    Diao, Wei
    Meng, Wanwan
    Zhang, Xujin
    BIOINSPIRATION & BIOMIMETICS, 2025, 20 (02)
  • [10] Battery state of charge estimation for electric vehicle using Kolmogorov-Arnold networks
    Sulaiman, Mohd Herwan
    Mustaffa, Zuriani
    Mohamed, Amir Izzani
    Samsudin, Ahmad Salihin
    Rashid, Muhammad Ikram Mohd
    ENERGY, 2024, 311