LIE-POISSON DESCRIPTION OF HAMILTONIAN RAY OPTICS

被引:14
|
作者
HOLM, DD
WOLF, KB
机构
[1] UNIV CALIF LOS ALAMOS SCI LAB,DIV THEORET,LOS ALAMOS,NM 87545
[2] UNIV NACL AUTONOMA MEXICO,INST INVEST MATEMAT APLICADAS & SIST,MEXICO CITY 01000,DF,MEXICO
来源
PHYSICA D | 1991年 / 51卷 / 1-3期
关键词
D O I
10.1016/0167-2789(91)90231-W
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We express classical Hamiltonian ray optics for light rays in axisymmetric fibers as a Lie-Poisson dynamical system defined in R3, regarded as the dual of the Lie algebra sp(2,R). The ray-tracing dynamics is interpreted geometrically as motion in R3 along the intersections of two-dimensional level surfaces of the conserved optical Hamiltonian and the skewness invariant (the analog of angular momentum, conserved because of the axisymmetry of the medium). In this geometrical picture, a Hamiltonian level surface is a vertically oriented cylinder whose cross section describes the radial profile of the refractive index, and a level surface of the skewness function is a hyperboloid of revolution around a horizontal axis. Points of tangency of these surfaces are equilibria, which are stable when the Gaussian curvature of the Hamiltonian level surface (constrained by the skewness function) is negative definite at the equilibrium point. Examples are discussed for various radial profiles of the refractive index. This discussion places optical ray tracing in fibers into the geometrical setting of Lie-Poisson Hamiltonian dynamics and provides an example of optical ray trapping within separatrices (homoclinic orbits).
引用
收藏
页码:189 / 199
页数:11
相关论文
共 50 条
  • [31] Poisson integrators for Lie-Poisson structures on R3
    Song, Lina
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2011, 44 (15)
  • [32] Deformations of the Lie-Poisson sphere of a compact semisimple Lie algebra
    Marcut, Ioan
    COMPOSITIO MATHEMATICA, 2014, 150 (04) : 568 - 578
  • [33] SPLITTING INTEGRATORS FOR STOCHASTIC LIE-POISSON SYSTEMS
    Brehier, Charles-Edouard
    Cohen, David
    Jahnke, Tobias
    MATHEMATICS OF COMPUTATION, 2023, 92 (343) : 2167 - 2216
  • [34] Casimir preserving stochastic Lie-Poisson integrators
    Luesink, Erwin
    Ephrati, Sagy
    Cifani, Paolo
    Geurts, Bernard
    ADVANCES IN CONTINUOUS AND DISCRETE MODELS, 2024, 2024 (01):
  • [35] Lie-Poisson gauge theories and κ-Minkowski electrodynamics
    V. G. Kupriyanov
    M. A. Kurkov
    P. Vitale
    Journal of High Energy Physics, 2023
  • [36] Deformed Lie-Poisson structures for quantized groups
    Lyakhovsky, VD
    Mirolubov, AM
    CZECHOSLOVAK JOURNAL OF PHYSICS, 1997, 47 (01) : 63 - 70
  • [37] SYMPLECTIC STRUCTURES ASSOCIATED TO LIE-POISSON GROUPS
    ALEKSEEV, AY
    MALKIN, AZ
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1994, 162 (01) : 147 - 173
  • [38] INTEGRATORS FOR LIE-POISSON DYNAMIC-SYSTEMS
    CHANNELL, PJ
    SCOVEL, JC
    PHYSICA D, 1991, 50 (01): : 80 - 88
  • [39] The Lie-Poisson structure of the LAE-α equation
    Gay-Balmaz, Francois
    Ratiu, Tudor S.
    DYNAMICS OF PARTIAL DIFFERENTIAL EQUATIONS, 2005, 2 (01) : 25 - 57
  • [40] Classification and Casimir invariants of Lie-Poisson brackets
    Thiffeault, JL
    Morrison, PJ
    PHYSICA D-NONLINEAR PHENOMENA, 2000, 136 (3-4) : 205 - 244