LIE-POISSON DESCRIPTION OF HAMILTONIAN RAY OPTICS

被引:14
|
作者
HOLM, DD
WOLF, KB
机构
[1] UNIV CALIF LOS ALAMOS SCI LAB,DIV THEORET,LOS ALAMOS,NM 87545
[2] UNIV NACL AUTONOMA MEXICO,INST INVEST MATEMAT APLICADAS & SIST,MEXICO CITY 01000,DF,MEXICO
来源
PHYSICA D | 1991年 / 51卷 / 1-3期
关键词
D O I
10.1016/0167-2789(91)90231-W
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We express classical Hamiltonian ray optics for light rays in axisymmetric fibers as a Lie-Poisson dynamical system defined in R3, regarded as the dual of the Lie algebra sp(2,R). The ray-tracing dynamics is interpreted geometrically as motion in R3 along the intersections of two-dimensional level surfaces of the conserved optical Hamiltonian and the skewness invariant (the analog of angular momentum, conserved because of the axisymmetry of the medium). In this geometrical picture, a Hamiltonian level surface is a vertically oriented cylinder whose cross section describes the radial profile of the refractive index, and a level surface of the skewness function is a hyperboloid of revolution around a horizontal axis. Points of tangency of these surfaces are equilibria, which are stable when the Gaussian curvature of the Hamiltonian level surface (constrained by the skewness function) is negative definite at the equilibrium point. Examples are discussed for various radial profiles of the refractive index. This discussion places optical ray tracing in fibers into the geometrical setting of Lie-Poisson Hamiltonian dynamics and provides an example of optical ray trapping within separatrices (homoclinic orbits).
引用
收藏
页码:189 / 199
页数:11
相关论文
共 50 条
  • [21] Quadratic deformations of Lie-Poisson structures
    Lin, Qian
    Liu, Zhangju
    Sheng, Yunhe
    LETTERS IN MATHEMATICAL PHYSICS, 2008, 83 (03) : 217 - 229
  • [22] Charged particle in Lie-Poisson electrodynamics
    Basilio, B. S.
    Kupriyanov, V. G.
    Kurkov, M. A.
    EUROPEAN PHYSICAL JOURNAL C, 2025, 85 (02):
  • [23] DYNAMICAL ASPECTS OF LIE-POISSON STRUCTURES
    LIZZI, F
    MARMO, G
    SPARANO, G
    VITALE, P
    MODERN PHYSICS LETTERS A, 1993, 8 (31) : 2973 - 2987
  • [24] Lie-Poisson deformation of the Poincare algebra
    Stern, A
    Yakushin, I
    JOURNAL OF MATHEMATICAL PHYSICS, 1996, 37 (04) : 2053 - 2070
  • [25] Extensions of Banach Lie-Poisson spaces
    Odzijewicz, A
    Ratiu, TS
    JOURNAL OF FUNCTIONAL ANALYSIS, 2004, 217 (01) : 103 - 125
  • [26] Lie-Poisson Neural Networks (LPNets): Data-based computing of Hamiltonian systems with symmetries
    Eldred, Christopher
    Gay-Balmaz, Francois
    Huraka, Sofiia
    Putkaradze, Vakhtang
    NEURAL NETWORKS, 2024, 173
  • [27] Cluster variables for affine Lie-Poisson systems
    Chekhov, L. O.
    THEORETICAL AND MATHEMATICAL PHYSICS, 2023, 217 (03) : 1987 - 2004
  • [28] Quantization of Lie-Poisson structures by peripheric chains
    Lyakhovsky, VD
    del Olmo, MA
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2002, 35 (27): : 5731 - 5750
  • [29] LIE-POISSON STRUCTURES OVER DIFFERENTIAL ALGEBRAS
    Zharinov, V. V.
    THEORETICAL AND MATHEMATICAL PHYSICS, 2017, 192 (03) : 1337 - 1349
  • [30] EXPLICIT LIE-POISSON INTEGRATION AND THE EULER EQUATIONS
    MCLACHLAN, RI
    PHYSICAL REVIEW LETTERS, 1993, 71 (19) : 3043 - 3046