LIE-POISSON DESCRIPTION OF HAMILTONIAN RAY OPTICS

被引:14
|
作者
HOLM, DD
WOLF, KB
机构
[1] UNIV CALIF LOS ALAMOS SCI LAB,DIV THEORET,LOS ALAMOS,NM 87545
[2] UNIV NACL AUTONOMA MEXICO,INST INVEST MATEMAT APLICADAS & SIST,MEXICO CITY 01000,DF,MEXICO
来源
PHYSICA D | 1991年 / 51卷 / 1-3期
关键词
D O I
10.1016/0167-2789(91)90231-W
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We express classical Hamiltonian ray optics for light rays in axisymmetric fibers as a Lie-Poisson dynamical system defined in R3, regarded as the dual of the Lie algebra sp(2,R). The ray-tracing dynamics is interpreted geometrically as motion in R3 along the intersections of two-dimensional level surfaces of the conserved optical Hamiltonian and the skewness invariant (the analog of angular momentum, conserved because of the axisymmetry of the medium). In this geometrical picture, a Hamiltonian level surface is a vertically oriented cylinder whose cross section describes the radial profile of the refractive index, and a level surface of the skewness function is a hyperboloid of revolution around a horizontal axis. Points of tangency of these surfaces are equilibria, which are stable when the Gaussian curvature of the Hamiltonian level surface (constrained by the skewness function) is negative definite at the equilibrium point. Examples are discussed for various radial profiles of the refractive index. This discussion places optical ray tracing in fibers into the geometrical setting of Lie-Poisson Hamiltonian dynamics and provides an example of optical ray trapping within separatrices (homoclinic orbits).
引用
收藏
页码:189 / 199
页数:11
相关论文
共 50 条
  • [41] Lie-Poisson gauge theories and κ-Minkowski electrodynamics
    Kupriyanov, V. G.
    Kurkov, M. A.
    Vitale, P.
    JOURNAL OF HIGH ENERGY PHYSICS, 2023, 2023 (11)
  • [42] Variational problem for Hamiltonian system on so(k, m) Lie-Poisson manifold and dynamics of semiclassical spin
    Deriglazov, A. A.
    MODERN PHYSICS LETTERS A, 2014, 29 (10)
  • [43] ORTHOGONAL STRUCTURE ON A LIE-ALGEBRA AND THE ASSOCIATED LIE-POISSON STRUCTURE
    MEDINA, A
    COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 1985, 301 (10): : 507 - 510
  • [44] Integrable quadratic Hamiltonians with a linear Lie-Poisson bracket
    Wolf, T.
    GENERAL RELATIVITY AND GRAVITATION, 2006, 38 (06) : 1115 - 1127
  • [45] Numerical evidence of nonintegrability of certain Lie-Poisson system
    Maciejewski, AJ
    Gozdziewski, K
    REPORTS ON MATHEMATICAL PHYSICS, 1999, 44 (1-2) : 133 - 142
  • [46] Symplectic leaves in real Banach Lie-Poisson spaces
    Beltita, D
    Ratiu, TS
    GEOMETRIC AND FUNCTIONAL ANALYSIS, 2005, 15 (04) : 753 - 779
  • [47] LIE-POISSON INTEGRATION FOR RIGID-BODY DYNAMICS
    LI, S
    QIN, MZ
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 1995, 30 (09) : 105 - 118
  • [48] SU (2) Lie-Poisson algebra and its descendants
    Dai, Jin
    Ioannidou, Theodora
    Niemi, Antti J.
    PHYSICAL REVIEW D, 2022, 106 (05)
  • [49] The Lie-Poisson structure of the Euler equations of an ideal fluid
    Vasylkevych, Sergiy
    Marsden, Jerrold E.
    DYNAMICS OF PARTIAL DIFFERENTIAL EQUATIONS, 2005, 2 (04) : 281 - 300
  • [50] LIE-POISSON INTEGRATORS FOR A RIGID SATELLITE ON A CIRCULAR ORBIT
    Aydin, A.
    TWMS JOURNAL OF APPLIED AND ENGINEERING MATHEMATICS, 2011, 1 (02): : 150 - 161