Casimir preserving stochastic Lie-Poisson integrators

被引:1
|
作者
Luesink, Erwin [1 ]
Ephrati, Sagy [1 ]
Cifani, Paolo [1 ,2 ]
Geurts, Bernard [1 ,3 ]
机构
[1] Univ Twente, Fac EEMCS, Dept Appl Math, Multiscale Modelling & Simulat, POB 217, NL-7500 AE Enschede, Netherlands
[2] Gran Sasso Sci Inst, Viale F Crispi 7, I-67100 Laquila, Italy
[3] Eindhoven Univ Technol, Ctr Computat Energy Res, Dept Appl Phys, Multiscale Phys, POB 513, NL-5600 MB Eindhoven, Netherlands
来源
关键词
Stochastic Lie-Poisson integration; Hamiltonian mechanics; Stochastic differential equations; Geometric integration; Structure preservation; Lie group; Lie algebra; Coadjoint orbits; NUMERICAL-INTEGRATION; COADJOINT ORBITS; MECHANICS; EQUATIONS; TOPOLOGY;
D O I
10.1186/s13662-023-03796-y
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Casimir preserving integrators for stochastic Lie-Poisson equations with Stratonovich noise are developed, extending Runge-Kutta Munthe-Kaas methods. The underlying Lie-Poisson structure is preserved along stochastic trajectories. A related stochastic differential equation on the Lie algebra is derived. The solution of this differential equation updates the evolution of the Lie-Poisson dynamics using the exponential map. The constructed numerical method conserves Casimir-invariants exactly, which is important for long time integration. This is illustrated numerically for the case of the stochastic heavy top and the stochastic sine-Euler equations.
引用
收藏
页数:23
相关论文
共 50 条
  • [1] Casimir preserving stochastic Lie–Poisson integrators
    Erwin Luesink
    Sagy Ephrati
    Paolo Cifani
    Bernard Geurts
    Advances in Continuous and Discrete Models, 2024
  • [2] SPLITTING INTEGRATORS FOR STOCHASTIC LIE-POISSON SYSTEMS
    Brehier, Charles-Edouard
    Cohen, David
    Jahnke, Tobias
    MATHEMATICS OF COMPUTATION, 2023, 92 (343) : 2167 - 2216
  • [3] LIE-POISSON HAMILTON-JACOBI THEORY AND LIE-POISSON INTEGRATORS
    ZHONG, G
    MARSDEN, JE
    PHYSICS LETTERS A, 1988, 133 (03) : 134 - 139
  • [4] LIE-POISSON NUMERICAL METHOD FOR A CLASS OF STOCHASTIC LIE-POISSON SYSTEMS
    Liu, Qianqian
    Wang, Lijin
    INTERNATIONAL JOURNAL OF NUMERICAL ANALYSIS AND MODELING, 2024, 21 (01) : 104 - 119
  • [5] INTEGRATORS FOR LIE-POISSON DYNAMIC-SYSTEMS
    CHANNELL, PJ
    SCOVEL, JC
    PHYSICA D, 1991, 50 (01): : 80 - 88
  • [6] Lie-Poisson integrators: A Hamiltonian, variational approach
    Ma, Zhanhua
    Rowley, Clarence W.
    INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 2010, 82 (13) : 1609 - 1644
  • [7] Poisson integrators for Lie-Poisson structures on R3
    Song, Lina
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2011, 44 (15)
  • [8] Classification and Casimir invariants of Lie-Poisson brackets
    Thiffeault, JL
    Morrison, PJ
    PHYSICA D-NONLINEAR PHENOMENA, 2000, 136 (3-4) : 205 - 244
  • [9] LIE-POISSON INTEGRATORS FOR A RIGID SATELLITE ON A CIRCULAR ORBIT
    Aydin, A.
    TWMS JOURNAL OF APPLIED AND ENGINEERING MATHEMATICS, 2011, 1 (02): : 150 - 161
  • [10] Collective Lie-Poisson integrators on R3
    McLachlan, Robert I.
    Modin, Klas
    Verdier, Olivier
    IMA JOURNAL OF NUMERICAL ANALYSIS, 2015, 35 (02) : 546 - 560