Casimir preserving stochastic Lie-Poisson integrators

被引:1
|
作者
Luesink, Erwin [1 ]
Ephrati, Sagy [1 ]
Cifani, Paolo [1 ,2 ]
Geurts, Bernard [1 ,3 ]
机构
[1] Univ Twente, Fac EEMCS, Dept Appl Math, Multiscale Modelling & Simulat, POB 217, NL-7500 AE Enschede, Netherlands
[2] Gran Sasso Sci Inst, Viale F Crispi 7, I-67100 Laquila, Italy
[3] Eindhoven Univ Technol, Ctr Computat Energy Res, Dept Appl Phys, Multiscale Phys, POB 513, NL-5600 MB Eindhoven, Netherlands
来源
关键词
Stochastic Lie-Poisson integration; Hamiltonian mechanics; Stochastic differential equations; Geometric integration; Structure preservation; Lie group; Lie algebra; Coadjoint orbits; NUMERICAL-INTEGRATION; COADJOINT ORBITS; MECHANICS; EQUATIONS; TOPOLOGY;
D O I
10.1186/s13662-023-03796-y
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Casimir preserving integrators for stochastic Lie-Poisson equations with Stratonovich noise are developed, extending Runge-Kutta Munthe-Kaas methods. The underlying Lie-Poisson structure is preserved along stochastic trajectories. A related stochastic differential equation on the Lie algebra is derived. The solution of this differential equation updates the evolution of the Lie-Poisson dynamics using the exponential map. The constructed numerical method conserves Casimir-invariants exactly, which is important for long time integration. This is illustrated numerically for the case of the stochastic heavy top and the stochastic sine-Euler equations.
引用
收藏
页数:23
相关论文
共 50 条
  • [41] Lie-Poisson gauge theories and κ-Minkowski electrodynamics
    V. G. Kupriyanov
    M. A. Kurkov
    P. Vitale
    Journal of High Energy Physics, 2023
  • [42] Deformed Lie-Poisson structures for quantized groups
    Lyakhovsky, VD
    Mirolubov, AM
    CZECHOSLOVAK JOURNAL OF PHYSICS, 1997, 47 (01) : 63 - 70
  • [43] SYMPLECTIC STRUCTURES ASSOCIATED TO LIE-POISSON GROUPS
    ALEKSEEV, AY
    MALKIN, AZ
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1994, 162 (01) : 147 - 173
  • [44] The Lie-Poisson structure of the LAE-α equation
    Gay-Balmaz, Francois
    Ratiu, Tudor S.
    DYNAMICS OF PARTIAL DIFFERENTIAL EQUATIONS, 2005, 2 (01) : 25 - 57
  • [45] Lie-Poisson gauge theories and κ-Minkowski electrodynamics
    Kupriyanov, V. G.
    Kurkov, M. A.
    Vitale, P.
    JOURNAL OF HIGH ENERGY PHYSICS, 2023, 2023 (11)
  • [46] Hamiltonian analysis in Lie-Poisson gauge theory
    Bascone, Francesco
    Kurkov, Maxim
    INTERNATIONAL JOURNAL OF GEOMETRIC METHODS IN MODERN PHYSICS, 2024, 21 (06)
  • [47] ORTHOGONAL STRUCTURE ON A LIE-ALGEBRA AND THE ASSOCIATED LIE-POISSON STRUCTURE
    MEDINA, A
    COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 1985, 301 (10): : 507 - 510
  • [48] Stochastic Lie group integrators
    Malham, Simon J. A.
    Wiese, Anke
    SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2008, 30 (02): : 597 - 617
  • [49] Integrable quadratic Hamiltonians with a linear Lie-Poisson bracket
    Wolf, T.
    GENERAL RELATIVITY AND GRAVITATION, 2006, 38 (06) : 1115 - 1127
  • [50] Numerical evidence of nonintegrability of certain Lie-Poisson system
    Maciejewski, AJ
    Gozdziewski, K
    REPORTS ON MATHEMATICAL PHYSICS, 1999, 44 (1-2) : 133 - 142