Hamiltonian analysis in Lie-Poisson gauge theory

被引:1
|
作者
Bascone, Francesco [1 ]
Kurkov, Maxim [1 ,2 ]
机构
[1] INFN, Sez Napoli, Complesso Univ Monte S Angelo Edificio 6,via Cinti, I-80126 Naples, Italy
[2] Univ Napoli Federico II, Dipartimento Fis E Pancini, Complesso Univ Monte S Angelo Edificio 6,Via Cinti, I-80126 Naples, Italy
关键词
noncommutative geometry; gauge theory;
D O I
10.1142/S0219887824501081
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Lie-Poisson gauge formalism provides a semiclassical description of noncommutative U(1) gauge theory with Lie algebra type noncommutativity. Using the Dirac approach to constrained Hamiltonian systems, we focus on a class of Lie-Poisson gauge models, which exhibit an admissible Lagrangian description. The underlying noncommutativity is supposed to be purely spatial. Analyzing the constraints, we demonstrate that these models have as many physical degrees of freedom as there are present in the Maxwell theory.
引用
收藏
页数:13
相关论文
共 50 条
  • [1] LIE-POISSON HAMILTON-JACOBI THEORY AND LIE-POISSON INTEGRATORS
    ZHONG, G
    MARSDEN, JE
    PHYSICS LETTERS A, 1988, 133 (03) : 134 - 139
  • [2] LIE-POISSON DESCRIPTION OF HAMILTONIAN RAY OPTICS
    HOLM, DD
    WOLF, KB
    PHYSICA D, 1991, 51 (1-3): : 189 - 199
  • [3] Lie-Poisson integrators: A Hamiltonian, variational approach
    Ma, Zhanhua
    Rowley, Clarence W.
    INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 2010, 82 (13) : 1609 - 1644
  • [4] Lie-Poisson gauge theories and κ-Minkowski electrodynamics
    V. G. Kupriyanov
    M. A. Kurkov
    P. Vitale
    Journal of High Energy Physics, 2023
  • [5] Lie-Poisson gauge theories and κ-Minkowski electrodynamics
    Kupriyanov, V. G.
    Kurkov, M. A.
    Vitale, P.
    JOURNAL OF HIGH ENERGY PHYSICS, 2023, 2023 (11)
  • [6] Lie-Poisson theory for direct limit Lie algebras
    Colarusso, Mark
    Lau, Michael
    JOURNAL OF PURE AND APPLIED ALGEBRA, 2016, 220 (04) : 1489 - 1516
  • [7] LIE-POISSON NUMERICAL METHOD FOR A CLASS OF STOCHASTIC LIE-POISSON SYSTEMS
    Liu, Qianqian
    Wang, Lijin
    INTERNATIONAL JOURNAL OF NUMERICAL ANALYSIS AND MODELING, 2024, 21 (01) : 104 - 119
  • [8] A NOTE FOR LIE-POISSON HAMILTON-JACOBI EQUATION AND LIE-POISSON INTEGRATOR
    LI, ST
    QIN, MZ
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 1995, 30 (07) : 67 - 74
  • [9] On an isospectral Lie-Poisson system and its lie algebra
    Bloch, AM
    Iserles, A
    FOUNDATIONS OF COMPUTATIONAL MATHEMATICS, 2006, 6 (01) : 121 - 144
  • [10] Invariants and labels in Lie-Poisson systems
    Thiffeault, JL
    Morrison, PJ
    NONLINEAR DYNAMICS AND CHAOS IN ASTROPHYSICS: FESTSCHRIFT IN HONOR OF GEORGE CONTOPOULOS, 1998, 867 : 109 - 119