Hamiltonian analysis in Lie-Poisson gauge theory

被引:1
|
作者
Bascone, Francesco [1 ]
Kurkov, Maxim [1 ,2 ]
机构
[1] INFN, Sez Napoli, Complesso Univ Monte S Angelo Edificio 6,via Cinti, I-80126 Naples, Italy
[2] Univ Napoli Federico II, Dipartimento Fis E Pancini, Complesso Univ Monte S Angelo Edificio 6,Via Cinti, I-80126 Naples, Italy
关键词
noncommutative geometry; gauge theory;
D O I
10.1142/S0219887824501081
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Lie-Poisson gauge formalism provides a semiclassical description of noncommutative U(1) gauge theory with Lie algebra type noncommutativity. Using the Dirac approach to constrained Hamiltonian systems, we focus on a class of Lie-Poisson gauge models, which exhibit an admissible Lagrangian description. The underlying noncommutativity is supposed to be purely spatial. Analyzing the constraints, we demonstrate that these models have as many physical degrees of freedom as there are present in the Maxwell theory.
引用
收藏
页数:13
相关论文
共 50 条
  • [11] LIE-POISSON GROUPS - REMARKS AND EXAMPLES
    CAHEN, M
    GUTT, S
    OHN, C
    PARKER, M
    LETTERS IN MATHEMATICAL PHYSICS, 1990, 19 (04) : 343 - 353
  • [12] Contractions in deformed Lie-Poisson structures
    Lyakhovsky, VD
    Mirolyubov, AM
    INTERNATIONAL JOURNAL OF MODERN PHYSICS A, 1997, 12 (01): : 225 - 230
  • [13] Action-Angle Variables for the Lie-Poisson Hamiltonian Systems Associated with the Manakov Equation
    Geng, Xue
    Guan, Liang
    COMMUNICATIONS ON APPLIED MATHEMATICS AND COMPUTATION, 2025,
  • [14] Lie-Poisson Methods for Isospectral Flows
    Modin, Klas
    Viviani, Milo
    FOUNDATIONS OF COMPUTATIONAL MATHEMATICS, 2020, 20 (04) : 889 - 921
  • [15] Deformation of Lie-Poisson algebras and chirality
    Yoshida, Zensho
    Morrison, Philip J.
    JOURNAL OF MATHEMATICAL PHYSICS, 2020, 61 (08)
  • [16] CLEBSCH CANONIZATION OF LIE-POISSON SYSTEMS
    Jayawardana, Buddhika
    Morrison, Philip
    Ohsawa, Tomoki
    JOURNAL OF GEOMETRIC MECHANICS, 2022, 14 (04): : 635 - 658
  • [17] LORENTZ TRANSFORMATIONS AS LIE-POISSON SYMMETRIES
    SIMONI, A
    STERN, A
    YAKUSHIN, I
    JOURNAL OF MATHEMATICAL PHYSICS, 1995, 36 (10) : 5588 - 5597
  • [18] On Extensions, Lie-Poisson Systems, and Dissipation
    Esen, Ogul
    Ozcan, Gokhan
    Sutlu, Serkan
    JOURNAL OF LIE THEORY, 2022, 32 (02) : 327 - 382
  • [19] Banach Lie-Poisson Spaces and Reduction
    Anatol Odzijewicz
    Tudor S. Ratiu
    Communications in Mathematical Physics, 2003, 243 : 1 - 54
  • [20] Controllability of Lie-Poisson reduced dynamics
    Manikonda, V
    Krishnaprasad, PS
    PROCEEDINGS OF THE 1997 AMERICAN CONTROL CONFERENCE, VOLS 1-6, 1997, : 2203 - 2207