CLEBSCH CANONIZATION OF LIE-POISSON SYSTEMS

被引:2
|
作者
Jayawardana, Buddhika [1 ]
Morrison, Philip [2 ,3 ]
Ohsawa, Tomoki [1 ]
机构
[1] Univ Texas Dallas, Dept Math Sci, 800 W Campbell Rd, Richardson, TX 75080 USA
[2] Univ Texas Austin, Dept Phys, Austin, TX 78712 USA
[3] Univ Texas Austin, Inst Fus Studio, Austin, TX 78712 USA
来源
JOURNAL OF GEOMETRIC MECHANICS | 2022年 / 14卷 / 04期
关键词
Canonization; Lie-Poisson equation; collectivization; momentum maps; Lie-Poisson integrator; MAXWELL-VLASOV EQUATIONS; CONTROLLED LAGRANGIANS; HAMILTONIAN-STRUCTURE; SEMIDIRECT PRODUCTS; COADJOINT ORBITS; VORTICES; STABILIZATION; INTEGRATORS; INVARIANTS; REDUCTION;
D O I
10.3934/jgm.2022017
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We propose a systematic procedure called the Clebsch canonization for obtaining a canonical Hamiltonian system that is related to a given Lie-Poisson equation via a momentum map. We describe both coordinate and geometric versions of the procedure, the latter apparently for the first time. We also find another momentum map so that the pair of momentum maps constitute a dual pair under a certain condition. The dual pair gives a concrete realization of what is commonly referred to as collectivization of Lie-Poisson systems. It also implies that solving the canonized system by symplectic Runge-Kutta methods yields so-called collective Lie-Poisson integrators that preserve the coadjoint orbits and hence the Casimirs exactly. We give a couple of examples, including the Kida vortex and the heavy top on a movable base with controls, which are Lie-Poisson systems on so(2, 1)* and (se(3). R-3)*, respectively.
引用
收藏
页码:635 / 658
页数:24
相关论文
共 50 条
  • [1] LIE-POISSON NUMERICAL METHOD FOR A CLASS OF STOCHASTIC LIE-POISSON SYSTEMS
    Liu, Qianqian
    Wang, Lijin
    INTERNATIONAL JOURNAL OF NUMERICAL ANALYSIS AND MODELING, 2024, 21 (01) : 104 - 119
  • [2] Invariants and labels in Lie-Poisson systems
    Thiffeault, JL
    Morrison, PJ
    NONLINEAR DYNAMICS AND CHAOS IN ASTROPHYSICS: FESTSCHRIFT IN HONOR OF GEORGE CONTOPOULOS, 1998, 867 : 109 - 119
  • [3] On Extensions, Lie-Poisson Systems, and Dissipation
    Esen, Ogul
    Ozcan, Gokhan
    Sutlu, Serkan
    JOURNAL OF LIE THEORY, 2022, 32 (02) : 327 - 382
  • [4] Cluster variables for affine Lie-Poisson systems
    Chekhov, L. O.
    THEORETICAL AND MATHEMATICAL PHYSICS, 2023, 217 (03) : 1987 - 2004
  • [5] LIE-POISSON HAMILTON-JACOBI THEORY AND LIE-POISSON INTEGRATORS
    ZHONG, G
    MARSDEN, JE
    PHYSICS LETTERS A, 1988, 133 (03) : 134 - 139
  • [6] SPLITTING INTEGRATORS FOR STOCHASTIC LIE-POISSON SYSTEMS
    Brehier, Charles-Edouard
    Cohen, David
    Jahnke, Tobias
    MATHEMATICS OF COMPUTATION, 2023, 92 (343) : 2167 - 2216
  • [7] INTEGRATORS FOR LIE-POISSON DYNAMIC-SYSTEMS
    CHANNELL, PJ
    SCOVEL, JC
    PHYSICA D, 1991, 50 (01): : 80 - 88
  • [8] A NOTE FOR LIE-POISSON HAMILTON-JACOBI EQUATION AND LIE-POISSON INTEGRATOR
    LI, ST
    QIN, MZ
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 1995, 30 (07) : 67 - 74
  • [9] On an isospectral Lie-Poisson system and its lie algebra
    Bloch, AM
    Iserles, A
    FOUNDATIONS OF COMPUTATIONAL MATHEMATICS, 2006, 6 (01) : 121 - 144
  • [10] LIE-POISSON GROUPS - REMARKS AND EXAMPLES
    CAHEN, M
    GUTT, S
    OHN, C
    PARKER, M
    LETTERS IN MATHEMATICAL PHYSICS, 1990, 19 (04) : 343 - 353