A NOTE FOR LIE-POISSON HAMILTON-JACOBI EQUATION AND LIE-POISSON INTEGRATOR

被引:5
|
作者
LI, ST [1 ]
QIN, MZ [1 ]
机构
[1] ACAD SINICA, CTR COMP, STATE KEY LAB SCI & ENGN COMP, BEIJING 100080, PEOPLES R CHINA
关键词
LIE-POISSON HAMILTON-JACOBI EQUATION; LIE-POISSON INTEGRATOR; GENERATING FUNCTION;
D O I
10.1016/0898-1221(95)00126-J
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, a clear Lie-Poisson Hamilton-Jacobi theory is presented. How to construct a Lie-Poisson integrator by generating function methods is also given, which is different from the Ge-Marsden methods [1]. An example on a rigid body has been given to illustrate this point.
引用
收藏
页码:67 / 74
页数:8
相关论文
共 50 条
  • [1] LIE-POISSON HAMILTON-JACOBI THEORY AND LIE-POISSON INTEGRATORS
    ZHONG, G
    MARSDEN, JE
    [J]. PHYSICS LETTERS A, 1988, 133 (03) : 134 - 139
  • [2] LIE-POISSON NUMERICAL METHOD FOR A CLASS OF STOCHASTIC LIE-POISSON SYSTEMS
    Liu, Qianqian
    Wang, Lijin
    [J]. INTERNATIONAL JOURNAL OF NUMERICAL ANALYSIS AND MODELING, 2024, 21 (01) : 104 - 119
  • [3] The Lie-Poisson structure of the LAE-α equation
    Gay-Balmaz, Francois
    Ratiu, Tudor S.
    [J]. DYNAMICS OF PARTIAL DIFFERENTIAL EQUATIONS, 2005, 2 (01) : 25 - 57
  • [4] On an isospectral Lie-Poisson system and its lie algebra
    Bloch, AM
    Iserles, A
    [J]. FOUNDATIONS OF COMPUTATIONAL MATHEMATICS, 2006, 6 (01) : 121 - 144
  • [5] Deformation of Lie-Poisson algebras and chirality
    Yoshida, Zensho
    Morrison, Philip J.
    [J]. JOURNAL OF MATHEMATICAL PHYSICS, 2020, 61 (08)
  • [6] Lie-Poisson Methods for Isospectral Flows
    Modin, Klas
    Viviani, Milo
    [J]. FOUNDATIONS OF COMPUTATIONAL MATHEMATICS, 2020, 20 (04) : 889 - 921
  • [7] Invariants and labels in Lie-Poisson systems
    Thiffeault, JL
    Morrison, PJ
    [J]. NONLINEAR DYNAMICS AND CHAOS IN ASTROPHYSICS: FESTSCHRIFT IN HONOR OF GEORGE CONTOPOULOS, 1998, 867 : 109 - 119
  • [8] LIE-POISSON GROUPS - REMARKS AND EXAMPLES
    CAHEN, M
    GUTT, S
    OHN, C
    PARKER, M
    [J]. LETTERS IN MATHEMATICAL PHYSICS, 1990, 19 (04) : 343 - 353
  • [9] Contractions in deformed Lie-Poisson structures
    Lyakhovsky, VD
    Mirolyubov, AM
    [J]. INTERNATIONAL JOURNAL OF MODERN PHYSICS A, 1997, 12 (01): : 225 - 230
  • [10] VARIATIONAL PRINCIPLES FOR LIE-POISSON AND HAMILTON-POINCARE EQUATIONS
    Cendra, Hernan
    Marsden, Jerrold E.
    Pekarsky, Sergey
    Ratiu, Tudor S.
    [J]. MOSCOW MATHEMATICAL JOURNAL, 2003, 3 (03) : 833 - 867