CLEBSCH CANONIZATION OF LIE-POISSON SYSTEMS

被引:2
|
作者
Jayawardana, Buddhika [1 ]
Morrison, Philip [2 ,3 ]
Ohsawa, Tomoki [1 ]
机构
[1] Univ Texas Dallas, Dept Math Sci, 800 W Campbell Rd, Richardson, TX 75080 USA
[2] Univ Texas Austin, Dept Phys, Austin, TX 78712 USA
[3] Univ Texas Austin, Inst Fus Studio, Austin, TX 78712 USA
来源
JOURNAL OF GEOMETRIC MECHANICS | 2022年 / 14卷 / 04期
关键词
Canonization; Lie-Poisson equation; collectivization; momentum maps; Lie-Poisson integrator; MAXWELL-VLASOV EQUATIONS; CONTROLLED LAGRANGIANS; HAMILTONIAN-STRUCTURE; SEMIDIRECT PRODUCTS; COADJOINT ORBITS; VORTICES; STABILIZATION; INTEGRATORS; INVARIANTS; REDUCTION;
D O I
10.3934/jgm.2022017
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We propose a systematic procedure called the Clebsch canonization for obtaining a canonical Hamiltonian system that is related to a given Lie-Poisson equation via a momentum map. We describe both coordinate and geometric versions of the procedure, the latter apparently for the first time. We also find another momentum map so that the pair of momentum maps constitute a dual pair under a certain condition. The dual pair gives a concrete realization of what is commonly referred to as collectivization of Lie-Poisson systems. It also implies that solving the canonized system by symplectic Runge-Kutta methods yields so-called collective Lie-Poisson integrators that preserve the coadjoint orbits and hence the Casimirs exactly. We give a couple of examples, including the Kida vortex and the heavy top on a movable base with controls, which are Lie-Poisson systems on so(2, 1)* and (se(3). R-3)*, respectively.
引用
收藏
页码:635 / 658
页数:24
相关论文
共 50 条
  • [21] Charged particle in Lie-Poisson electrodynamics
    Basilio, B. S.
    Kupriyanov, V. G.
    Kurkov, M. A.
    EUROPEAN PHYSICAL JOURNAL C, 2025, 85 (02):
  • [22] DYNAMICAL ASPECTS OF LIE-POISSON STRUCTURES
    LIZZI, F
    MARMO, G
    SPARANO, G
    VITALE, P
    MODERN PHYSICS LETTERS A, 1993, 8 (31) : 2973 - 2987
  • [23] Lie-Poisson deformation of the Poincare algebra
    Stern, A
    Yakushin, I
    JOURNAL OF MATHEMATICAL PHYSICS, 1996, 37 (04) : 2053 - 2070
  • [24] Extensions of Banach Lie-Poisson spaces
    Odzijewicz, A
    Ratiu, TS
    JOURNAL OF FUNCTIONAL ANALYSIS, 2004, 217 (01) : 103 - 125
  • [25] Splittings of operations for Lie-Poisson triple systems and related algebraic structures
    Ben Hassine, A.
    Chtioui, T.
    Mabrouk, S.
    Zouidi, F.
    JOURNAL OF ALGEBRA AND ITS APPLICATIONS, 2024,
  • [26] Quantization of Lie-Poisson structures by peripheric chains
    Lyakhovsky, VD
    del Olmo, MA
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2002, 35 (27): : 5731 - 5750
  • [27] LIE-POISSON DESCRIPTION OF HAMILTONIAN RAY OPTICS
    HOLM, DD
    WOLF, KB
    PHYSICA D, 1991, 51 (1-3): : 189 - 199
  • [28] LIE-POISSON STRUCTURES OVER DIFFERENTIAL ALGEBRAS
    Zharinov, V. V.
    THEORETICAL AND MATHEMATICAL PHYSICS, 2017, 192 (03) : 1337 - 1349
  • [29] EXPLICIT LIE-POISSON INTEGRATION AND THE EULER EQUATIONS
    MCLACHLAN, RI
    PHYSICAL REVIEW LETTERS, 1993, 71 (19) : 3043 - 3046
  • [30] Poisson integrators for Lie-Poisson structures on R3
    Song, Lina
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2011, 44 (15)