Poisson integrators for Lie-Poisson structures on R3

被引:0
|
作者
Song, Lina [1 ,2 ]
机构
[1] Jilin Univ, Dept Math, Changchun 130012, Peoples R China
[2] La Trobe Univ, Dept Math, Bundoora, Vic 3086, Australia
基金
澳大利亚研究理事会;
关键词
EQUATIONS; MANIFOLDS; SYSTEMS;
D O I
10.1088/1751-8113/44/15/155204
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
This paper is concerned with the study of Poisson integrators. We are interested in Lie-Poisson systems on R-3. First, we focus on Poisson integrators for constant Poisson systems and the transformations used for transforming Lie-Poisson structures to constant Poisson structures. Then, we construct local Poisson integrators for Lie-Poisson systems on R-3. Finally, we present the results of numerical experiments for two Lie-Poisson systems and compare our Poisson integrators with other known methods.
引用
收藏
页数:14
相关论文
共 50 条
  • [1] Collective Lie-Poisson integrators on R3
    McLachlan, Robert I.
    Modin, Klas
    Verdier, Olivier
    [J]. IMA JOURNAL OF NUMERICAL ANALYSIS, 2015, 35 (02) : 546 - 560
  • [2] LIE-POISSON HAMILTON-JACOBI THEORY AND LIE-POISSON INTEGRATORS
    ZHONG, G
    MARSDEN, JE
    [J]. PHYSICS LETTERS A, 1988, 133 (03) : 134 - 139
  • [3] Casimir preserving stochastic Lie-Poisson integrators
    Luesink, Erwin
    Ephrati, Sagy
    Cifani, Paolo
    Geurts, Bernard
    [J]. ADVANCES IN CONTINUOUS AND DISCRETE MODELS, 2024, 2024 (01):
  • [4] SPLITTING INTEGRATORS FOR STOCHASTIC LIE-POISSON SYSTEMS
    Brehier, Charles-Edouard
    Cohen, David
    Jahnke, Tobias
    [J]. MATHEMATICS OF COMPUTATION, 2023, 92 (343) : 2167 - 2216
  • [5] INTEGRATORS FOR LIE-POISSON DYNAMIC-SYSTEMS
    CHANNELL, PJ
    SCOVEL, JC
    [J]. PHYSICA D, 1991, 50 (01): : 80 - 88
  • [6] Lie-Poisson integrators: A Hamiltonian, variational approach
    Ma, Zhanhua
    Rowley, Clarence W.
    [J]. INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 2010, 82 (13) : 1609 - 1644
  • [7] LIE-POISSON INTEGRATORS FOR A RIGID SATELLITE ON A CIRCULAR ORBIT
    Aydin, A.
    [J]. TWMS JOURNAL OF APPLIED AND ENGINEERING MATHEMATICS, 2011, 1 (02): : 150 - 161
  • [8] Contractions in deformed Lie-Poisson structures
    Lyakhovsky, VD
    Mirolyubov, AM
    [J]. INTERNATIONAL JOURNAL OF MODERN PHYSICS A, 1997, 12 (01): : 225 - 230
  • [9] Quadratic deformations of Lie-Poisson structures
    Lin, Qian
    Liu, Zhangju
    Sheng, Yunhe
    [J]. LETTERS IN MATHEMATICAL PHYSICS, 2008, 83 (03) : 217 - 229
  • [10] DYNAMICAL ASPECTS OF LIE-POISSON STRUCTURES
    LIZZI, F
    MARMO, G
    SPARANO, G
    VITALE, P
    [J]. MODERN PHYSICS LETTERS A, 1993, 8 (31) : 2973 - 2987