Casimir preserving stochastic Lie-Poisson integrators

被引:1
|
作者
Luesink, Erwin [1 ]
Ephrati, Sagy [1 ]
Cifani, Paolo [1 ,2 ]
Geurts, Bernard [1 ,3 ]
机构
[1] Univ Twente, Fac EEMCS, Dept Appl Math, Multiscale Modelling & Simulat, POB 217, NL-7500 AE Enschede, Netherlands
[2] Gran Sasso Sci Inst, Viale F Crispi 7, I-67100 Laquila, Italy
[3] Eindhoven Univ Technol, Ctr Computat Energy Res, Dept Appl Phys, Multiscale Phys, POB 513, NL-5600 MB Eindhoven, Netherlands
来源
关键词
Stochastic Lie-Poisson integration; Hamiltonian mechanics; Stochastic differential equations; Geometric integration; Structure preservation; Lie group; Lie algebra; Coadjoint orbits; NUMERICAL-INTEGRATION; COADJOINT ORBITS; MECHANICS; EQUATIONS; TOPOLOGY;
D O I
10.1186/s13662-023-03796-y
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Casimir preserving integrators for stochastic Lie-Poisson equations with Stratonovich noise are developed, extending Runge-Kutta Munthe-Kaas methods. The underlying Lie-Poisson structure is preserved along stochastic trajectories. A related stochastic differential equation on the Lie algebra is derived. The solution of this differential equation updates the evolution of the Lie-Poisson dynamics using the exponential map. The constructed numerical method conserves Casimir-invariants exactly, which is important for long time integration. This is illustrated numerically for the case of the stochastic heavy top and the stochastic sine-Euler equations.
引用
收藏
页数:23
相关论文
共 50 条