Casimir preserving stochastic Lie-Poisson integrators

被引:1
|
作者
Luesink, Erwin [1 ]
Ephrati, Sagy [1 ]
Cifani, Paolo [1 ,2 ]
Geurts, Bernard [1 ,3 ]
机构
[1] Univ Twente, Fac EEMCS, Dept Appl Math, Multiscale Modelling & Simulat, POB 217, NL-7500 AE Enschede, Netherlands
[2] Gran Sasso Sci Inst, Viale F Crispi 7, I-67100 Laquila, Italy
[3] Eindhoven Univ Technol, Ctr Computat Energy Res, Dept Appl Phys, Multiscale Phys, POB 513, NL-5600 MB Eindhoven, Netherlands
来源
关键词
Stochastic Lie-Poisson integration; Hamiltonian mechanics; Stochastic differential equations; Geometric integration; Structure preservation; Lie group; Lie algebra; Coadjoint orbits; NUMERICAL-INTEGRATION; COADJOINT ORBITS; MECHANICS; EQUATIONS; TOPOLOGY;
D O I
10.1186/s13662-023-03796-y
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Casimir preserving integrators for stochastic Lie-Poisson equations with Stratonovich noise are developed, extending Runge-Kutta Munthe-Kaas methods. The underlying Lie-Poisson structure is preserved along stochastic trajectories. A related stochastic differential equation on the Lie algebra is derived. The solution of this differential equation updates the evolution of the Lie-Poisson dynamics using the exponential map. The constructed numerical method conserves Casimir-invariants exactly, which is important for long time integration. This is illustrated numerically for the case of the stochastic heavy top and the stochastic sine-Euler equations.
引用
收藏
页数:23
相关论文
共 50 条
  • [21] Lie-Poisson Methods for Isospectral Flows
    Modin, Klas
    Viviani, Milo
    FOUNDATIONS OF COMPUTATIONAL MATHEMATICS, 2020, 20 (04) : 889 - 921
  • [22] Deformation of Lie-Poisson algebras and chirality
    Yoshida, Zensho
    Morrison, Philip J.
    JOURNAL OF MATHEMATICAL PHYSICS, 2020, 61 (08)
  • [23] CLEBSCH CANONIZATION OF LIE-POISSON SYSTEMS
    Jayawardana, Buddhika
    Morrison, Philip
    Ohsawa, Tomoki
    JOURNAL OF GEOMETRIC MECHANICS, 2022, 14 (04): : 635 - 658
  • [24] LORENTZ TRANSFORMATIONS AS LIE-POISSON SYMMETRIES
    SIMONI, A
    STERN, A
    YAKUSHIN, I
    JOURNAL OF MATHEMATICAL PHYSICS, 1995, 36 (10) : 5588 - 5597
  • [25] On Extensions, Lie-Poisson Systems, and Dissipation
    Esen, Ogul
    Ozcan, Gokhan
    Sutlu, Serkan
    JOURNAL OF LIE THEORY, 2022, 32 (02) : 327 - 382
  • [26] Lie-Poisson theory for direct limit Lie algebras
    Colarusso, Mark
    Lau, Michael
    JOURNAL OF PURE AND APPLIED ALGEBRA, 2016, 220 (04) : 1489 - 1516
  • [27] Banach Lie-Poisson Spaces and Reduction
    Anatol Odzijewicz
    Tudor S. Ratiu
    Communications in Mathematical Physics, 2003, 243 : 1 - 54
  • [28] Controllability of Lie-Poisson reduced dynamics
    Manikonda, V
    Krishnaprasad, PS
    PROCEEDINGS OF THE 1997 AMERICAN CONTROL CONFERENCE, VOLS 1-6, 1997, : 2203 - 2207
  • [29] Banach Lie-Poisson spaces and reduction
    Odzijewicz, A
    Ratiu, TS
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2003, 243 (01) : 1 - 54
  • [30] Quadratic deformations of Lie-Poisson structures
    Lin, Qian
    Liu, Zhangju
    Sheng, Yunhe
    LETTERS IN MATHEMATICAL PHYSICS, 2008, 83 (03) : 217 - 229