Laser crystallization for large-area electronics

被引:0
|
作者
Toshiyuki Sameshima
机构
[1] Tokyo University of Agriculture and Technology,
来源
Applied Physics A | 2009年 / 96卷
关键词
85.30.Tv; 61.72.Uf; 81.10.Jt; 02.60.Cb; 64.70.D-;
D O I
暂无
中图分类号
学科分类号
摘要
Laser crystallization is reviewed for the purpose of fabrication of polycrystalline silicon thin film transistors (poly-Si TFTs). Laser-induced rapid heating is important for formation of crystalline films with a low thermal budget. Reduction of electrically active defects located at grain boundaries is essential for improving electrical properties of poly-Si films and achieving poly-Si TFTs with high performances. The internal film stress is attractive to increase the carrier mobility. Recent developments in laser crystallization methods with pulsed and continuous-wave lasers are also reviewed. Control of heat flow results in crystalline grain growth in the lateral direction, which is important for fabrication of large crystalline grains. We also report an annealing method using a high-power infrared semiconductor laser. High-power lasers will be attractive for rapid formation of crystalline films over a large area and activation of silicon with impurity atoms.
引用
收藏
页码:137 / 144
页数:7
相关论文
共 50 条
  • [21] A stretchable nanoscale dielectric for large-area wearable electronics
    Koo, Ja Hoon
    Son, Donghee
    [J]. NATURE ELECTRONICS, 2023, 6 (2) : 107 - 108
  • [22] Wirelessly powered large-area electronics for the Internet of Things
    Portilla, Luis
    Loganathan, Kalaivanan
    Faber, Hendrik
    Eid, Aline
    Hester, Jimmy G. D.
    Tentzeris, Manos M.
    Fattori, Marco
    Cantatore, Eugenio
    Jiang, Chen
    Nathan, Arokia
    Fiori, Gianluca
    Ibn-Mohammed, Taofeeq
    Anthopoulos, Thomas D.
    Pecunia, Vincenzo
    [J]. NATURE ELECTRONICS, 2023, 6 (01) : 10 - 17
  • [23] Laser-Assisted, Large-Area Selective Crystallization and Patterning of Titanium Dioxide Polymorphs
    Gerlein, Luis Felipe
    Benavides-Guerrero, Jaime Alberto
    Cloutier, Sylvain G.
    [J]. ADVANCED ENGINEERING MATERIALS, 2020, 22 (02)
  • [24] Flexible Fabrication of Flexible Electronics: A General Laser Ablation Strategy for Robust Large-Area Copper-Based Electronics
    Qin, Ruzhan
    Hu, Mingjun
    Zhang, Naibai
    Guo, Zhongyue
    Yan, Ze
    Li, Jiebo
    Liu, Jinzhang
    Shan, Guangcun
    Yang, Jun
    [J]. ADVANCED ELECTRONIC MATERIALS, 2019, 5 (10):
  • [25] A Large-Area Electronics Processing Platform Using Laser Technology for the Customization of Liquid Crystal Displays
    Yatulis, Jay
    Butler, Ryan
    Higgins, Mathew
    LaPlante, Curtis
    Chae, Soo Joh
    Jhun, Chul Gyu
    Kim, Woo Young
    [J]. ELECTRONIC MATERIALS LETTERS, 2009, 5 (04) : 195 - 200
  • [26] Large-area plastic nanogap electronics enabled by adhesion lithography
    James Semple
    Dimitra G. Georgiadou
    Gwenhivir Wyatt-Moon
    Minho Yoon
    Akmaral Seitkhan
    Emre Yengel
    Stephan Rossbauer
    Francesca Bottacchi
    Martyn A. McLachlan
    Donal D. C. Bradley
    Thomas D. Anthopoulos
    [J]. npj Flexible Electronics, 2
  • [27] Amorphous silicon: Vehicle and test bed for large-area electronics
    Wagner, Sigurd
    [J]. PHYSICA STATUS SOLIDI A-APPLICATIONS AND MATERIALS SCIENCE, 2010, 207 (03): : 501 - 509
  • [28] Toward manufacturing low-cost, large-area electronics
    Chason, M.
    Gamota, D. R.
    Brazis, P. W., Jr.
    Kalyanasundaram, K.
    Zhang, J.
    Lian, K. K.
    Croswell, R.
    [J]. MRS BULLETIN, 2006, 31 (06) : 471 - 475
  • [29] Soft deposition of large-area metal contacts for molecular electronics
    Shimizu, Ken T.
    Fabbri, Jason D.
    Jelincic, Jim J.
    Melosh, Nicholas A.
    [J]. ADVANCED MATERIALS, 2006, 18 (12) : 1499 - +
  • [30] Hybrid amorphous and polycrystalline silicon devices for large-area electronics
    Mei, P
    Boyce, JB
    Fork, DK
    Anderson, G
    Ho, J
    Lu, J
    Hack, M
    Lujan, R
    [J]. AMORPHOUS AND MICROCRYSTALLINE SILICON TECHNOLOGY-1998, 1998, 507 : 3 - 12