Wirelessly powered large-area electronics for the Internet of Things

被引:78
|
作者
Portilla, Luis [1 ]
Loganathan, Kalaivanan [2 ]
Faber, Hendrik [2 ]
Eid, Aline [3 ]
Hester, Jimmy G. D. [4 ]
Tentzeris, Manos M. [5 ]
Fattori, Marco [6 ]
Cantatore, Eugenio [6 ]
Jiang, Chen [7 ]
Nathan, Arokia [8 ]
Fiori, Gianluca [9 ]
Ibn-Mohammed, Taofeeq [10 ]
Anthopoulos, Thomas D. [2 ]
Pecunia, Vincenzo [11 ]
机构
[1] Fudan Univ, Frontier Inst Chip & Syst, Shanghai, Peoples R China
[2] King Abdullah Univ Sci & Technol KAUST, KAUST Solar Ctr KSC, Thuwal, Saudi Arabia
[3] Univ Michigan, Dept Elect Engn & Comp Sci, Ann Arbor, MI 48109 USA
[4] Atheraxon Inc, Atlanta, GA USA
[5] Georgia Inst Technol, Elect & Comp Engn, Atlanta, GA USA
[6] Eindhoven Univ Technol, Integrated Circuits Grp, Eindhoven, Netherlands
[7] Tsinghua Univ, Dept Elect Engn, Beijing, Peoples R China
[8] Univ Cambridge, Darwin Coll, Cambridge, England
[9] Univ Pisa, Dipartimento Ingn Informaz, Pisa, Italy
[10] Univ Warwick, WMG, Computat Sustainabil Res Grp CSRG, Coventry, W Midlands, England
[11] Simon Fraser Univ, Sch Sustainable Energy Engn, Surrey, BC, Canada
关键词
FILM TRANSISTORS; CIRCUIT; ENERGY; GAIN;
D O I
10.1038/s41928-022-00898-5
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Powering the increasing number of sensor nodes used in the Internet of Things creates a technological challenge. The economic and sustainability issues of battery-powered devices mean that wirelessly powered operation-combined with environmentally friendly circuit technologies-will be needed. Large-area electronics-which can be based on organic semiconductors, amorphous metal oxide semiconductors, semiconducting carbon nanotubes and two-dimensional semiconductors-could provide a solution. Here we examine the potential of large-area electronics technology in the development of sustainable, wirelessly powered Internet of Things sensor nodes. We provide a system-level analysis of wirelessly powered sensor nodes, identifying the constraints faced by such devices and highlighting promising architectures and design approaches. We then explore the use of large-area electronics technology in wirelessly powered Internet of Things sensor nodes, with a focus on low-power transistor circuits for digital processing and signal amplification, as well as high-speed diodes and printed antennas for data communication and radiofrequency energy harvesting.
引用
收藏
页码:10 / 17
页数:8
相关论文
共 50 条
  • [1] Wirelessly powered large-area electronics for the Internet of Things
    Luis Portilla
    Kalaivanan Loganathan
    Hendrik Faber
    Aline Eid
    Jimmy G. D. Hester
    Manos M. Tentzeris
    Marco Fattori
    Eugenio Cantatore
    Chen Jiang
    Arokia Nathan
    Gianluca Fiori
    Taofeeq Ibn-Mohammed
    Thomas D. Anthopoulos
    Vincenzo Pecunia
    [J]. Nature Electronics, 2023, 6 : 10 - 17
  • [2] Publisher Correction: Wirelessly powered large-area electronics for the Internet of Things
    Luis Portilla
    Kalaivanan Loganathan
    Hendrik Faber
    Aline Eid
    Jimmy G. D. Hester
    Manos M. Tentzeris
    Marco Fattori
    Eugenio Cantatore
    Chen Jiang
    Arokia Nathan
    Gianluca Fiori
    Taofeeq Ibn-Mohammed
    Thomas D. Anthopoulos
    Vincenzo Pecunia
    [J]. Nature Electronics, 2023, 6 : 87 - 87
  • [3] Wirelessly powered large-area electronics for the Internet of Things (vol 6, pg.no: 10, 2023)
    Portilla, Luis
    Loganathan, Kalaivanan
    Faber, Hendrik
    Eid, Aline
    Hester, Jimmy G. D.
    Tentzeris, Manos M. M.
    Fattori, Marco
    Cantatore, Eugenio
    Jiang, Chen
    Nathan, Arokia
    Fiori, Gianluca
    Ibn-Mohammed, Taofeeq
    Anthopoulos, Thomas D. D.
    Pecunia, Vincenzo
    [J]. NATURE ELECTRONICS, 2023, 6 (1) : 87 - 87
  • [4] Laser crystallization for large-area electronics
    Toshiyuki Sameshima
    [J]. Applied Physics A, 2009, 96 : 137 - 144
  • [5] Stretchable, Large-area Organic Electronics
    Sekitani, Tsuyoshi
    Someya, Takao
    [J]. ADVANCED MATERIALS, 2010, 22 (20) : 2228 - 2246
  • [6] Innovative Manufacturing of Large-Area Electronics
    Occhipinti, Luigi G.
    [J]. PROCEEDINGS OF THE 2014 44TH EUROPEAN SOLID-STATE DEVICE RESEARCH CONFERENCE (ESSDERC 2014), 2014, : 194 - 197
  • [7] Laser crystallization for large-area electronics
    Sameshima, Toshiyuki
    [J]. APPLIED PHYSICS A-MATERIALS SCIENCE & PROCESSING, 2009, 96 (01): : 137 - 144
  • [8] Internet-of-Things Sensors Wirelessly Powered by Electrically Small Huygens Dipole Rectenna
    Lin, Wei
    Ziolkowski, Richard W.
    [J]. 2019 INTERNATIONAL SYMPOSIUM ON ANTENNAS AND PROPAGATION (ISAP 2019), 2019,
  • [9] Printed organic transistors for large-area electronics
    Someya, Takao
    Sakurai, Takayasu
    Sekitani, Tsuyoshi
    Noguchi, Yoshiaki
    [J]. 6TH INTERNATIONAL IEEE CONFERENCE ON POLYMERS AND ADHESIVES IN MICROELECTRONICS AND PHOTONICS, PROCEEDINGS 2007, 2007, : 6 - +
  • [10] Digital lithographic processing for large-area electronics
    Wong, William S.
    Chabinyc, Michael L.
    Limb, Scott
    Ready, Steven E.
    Lujan, Rene
    Daniel, Jurgen
    Street, Robert A.
    [J]. JOURNAL OF THE SOCIETY FOR INFORMATION DISPLAY, 2007, 15 (07) : 463 - 470